User Manual

3171 WAVEFORM & DUAL OUTPUT PULSE GENERATOR PUBLICATION NO. 980805

RACAL INSTRUMENTS

Racal Instruments, Inc. 4 Goodyear St., Irvine, CA 92618-2002 Tel: (800) RACAL-ATE, (800) 722-2528, (949) 859-8999; FAX: (949) 859-7139

 Racal Instruments, Ltd.

 480 Bath Road, Slough, Berkshire, SL1 6BE, United Kingdom

 Tel: +44 (0) 1628 604455; FAX: +44 (0) 1628 662017

Racal Systems Electronique S.A. 18 Avenue Dutartre, 78150 LeChesnay, France Tel: +33 (1) 3923 2222; FAX: +33 (1) 3923 2225

Racal Systems Elettronica s.r.l. Strada 2-Palazzo C4, 20090 Milanofiori Assago, Milan, Italy Tel: +39 (0)2 5750 1796; FAX +39 (0)2 5750 1828

Racal Elektronik System GmbH. Technologiepark Bergisch Gladbach, Friedrich-Ebert-Strasse, D-51429 Bergisch Gladbach, Germany Tel.: +49 2204 8442 00; FAX: +49 2204 8442 19

> Racal Australia Pty. Ltd. 3 Powells Road, Brookvale, NSW 2100, Australia Tel: +612 9936 7000, FAX: +612 9936 7036

Racal Electronics Pte. Ltd. 26 Ayer Rajah Crescent, 04-06/07 Ayer Rajah Industrial Estate, Singapore 0513. Tel: +65 7792200, FAX: +65 7785400

Racal Instruments, Ltd. Unit 5, 25F., Mega Trade Center, No 1, Mei Wan Road, Tsuen Wan, Hong Kong, PRC Tel: +852 2405 5500, FAX: +852 2416 4335

http://www.racalinstruments.com

PUBLICATION DATE: May 31, 2000

Copyright 1999 by Racal Instruments, Inc. Printed in the United States of America. All rights reserved. This book or parts thereof may not be reproduced in any form without written permission of the publisher.

WARRANTY STATEMENT

All Racal Instruments, Inc. products are designed and manufactured to exacting standards and in full conformance to Racal's ISO 9001 procedures.

For the specific terms of your standard warranty, or optional extended warranty or service agreement, contact your Racal customer service advisor. Please have the following information available to facilitate service.

- 1. Product serial number
- 2. Product model number
- 3. Your company and contact information

You may contact your customer service advisor by:

E-Mail:	Helpdesk@racalinstru	Helpdesk@racalinstruments.com	
Telephone:	+1 800 722 3262	(USA)	
	+44(0) 8706 080134	(UK)	
	+852 2405 5500	(Hong Kong)	
Fax:	+1 949 859 7309	(USA)	
	+44(0) 1628 662017	(UK)	
	+852 2416 4335	(Hong Kong)	

RETURN of PRODUCT

Authorization is required from Racal Instruments before you send us your product for service or calibration. Call your nearest Racal Instruments support facility. A list is located on the last page of this manual. If you are unsure where to call, contact Racal Instruments, Inc. Customer Support Department in Irvine, California, USA at 1-800-722-3262 or 1-949-859-8999 or via fax at 1-949-859-7139. We can be reached at: helpdesk@racalinstruments.com.

PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to Racal Instruments, and shall not, without express written permission of Racal Instruments, be used, in whole or in part to solicit quotations from a competitive source or used for manufacture by anyone other than Racal Instruments. The information herein has been developed at private expense, and may only be used for operation and maintenance reference purposes or for purposes of engineering evaluation and incorporation into technical specifications and other documents which specify procurement of products from Racal Instruments.

FOR YOUR SAFETY

Before undertaking any troubleshooting, maintenance or exploratory procedure, read carefully the **WARNINGS** and **CAUTION** notices.

This equipment contains voltage hazardous to human life and safety, and is capable of inflicting personal injury.

If this instrument is to be powered from the AC line (mains) through an autotransformer, ensure the common connector is connected to the neutral (earth pole) of the power supply.

Before operating the unit, ensure the conductor (green wire) is connected to the ground (earth) conductor of the power outlet. Do not use a two-conductor extension cord or a three-prong/two-prong adapter. This will defeat the protective feature of the third conductor in the power cord.

Maintenance and calibration procedures sometimes call for operation of the unit with power applied and protective covers removed. Read the procedures and heed warnings to avoid "live" circuit points.

Before operating this instrument:

- 1. Ensure the instrument is configured to operate on the voltage at the power source. See Installation Section.
- 2. Ensure the proper fuse is in place for the power source to operate.
- 3. Ensure all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If the instrument:

- fails to operate satisfactorily
- shows visible damage
- has been stored under unfavorable conditions
- has sustained stress

Do not operate until performance is checked by qualified personnel.

This page was left intentionally blank.

TABLE OF CONTENTS

MODEL 3171

Getting Started

What's In this Chapter	1-1
	1-1
Auto Calibration	1-2
(BIT) Built In Test	1-2
Understanding The Model 3171 Software	1-2
Understanding The Model 3171 Hardware	1-5
Arbitrary Waveform Generator Signals	1-5
External Modulation Input	1-5
Trigger/Gate Input	1-5
Main Output	1-5
External Clock Input	1-5
Sync Output	1-7
Cursor Output	1-7
Digital Pattern Outputs	1-7
Pulse Generator Signals	1-8
Pulse Generator 1 Output	1-8
Gate Input	1-8
Trigger Input	1-8
Clkout Output	1-8
	1-0
Pulse Generator 2 Output	1-0
Operating Modes:	1-0
Continuous Mode Operation	
Burst: Mode Operation	1-8
Triggered Mode Operation	1-9
Gated Mode Operation	1-9
Arbitrary Waveform Generator Functional Description	1-9
ARB Clocking:	1-10
External Clocking:	1-10
Pulse Generators Functional Description	1-10
VXIbus Interface	1-11
Items Shipped With The 3171	1-12

Configuring The Instrument

Installation Overview	2-1
Unpacking and Initial Inspection	2-1
Safety Precautions	2-1
Long Term Storage or Repackaging For Shipment	2-2
Preparation For Use	2-2
Logical Address Selection	2-3
Installation	2-4
Installing The VXI <i>plug&play</i> Software	2-4
Connecting To The Input/Output Connectors	2-5
Arbitrary Waveform Generator Connector Reference	2-6
Pulse Generator Connector Reference	2-8

Status LED Reference	2-9
Using The Instrument	
Overview	3-1
Output Termination	3-1
Output Protection	3-1
Power On/Reset Defaults	3-1
Initializing The Instrument	3-2
Self Test	3-2
Generating A Waveform	3-2
Outputting A Waveform	3-2
Triggering The Waveform Output	3-2
What To Do Now	3-3
Model 3171 Standard Commands for Programmable Instruments	
(SCPI) Commands	3-3
SCPI Command Format	3-3
Compound Command Separator	3-4
Abbreviated Commands	3-4
Optional Commands	3-4
Numeric Suffixes	3-4
Parameters	3-5
Queries	00
[SOURce <n>]:FUNCtion:SHAPe</n>	3-9
SOURce3:FUNCtion:POLarity	3-9
SOURce3:FUNCtion:COUNt	3-10
[SOURce <n>:VOLTage:MODE</n>	3-10
[SOURce <n>]:VOLTage[:LEVel][:IMMediate][:AMPLitude</n>	3-11
[SOURce <n>]:VOLTage[:LEVel]:TRIGgered[:AMPLitude]</n>	3-11
[SOURce <n>]:VOLTage[:LEVe]]:TRIGgered:OFFSet</n>	3-12
SOURce3:VOLTage:REFerence:STATe	3-12
[SOURce <n>]:FREQuency:MODE</n>	3-12
SOURce3:FREQuency[:CW]	3-12
	3-13
[SOURce <n>]:PULSe:PERiod</n>	3-13
[SOURce <n>]:PULSe:WIDTh</n>	-
[SOURce <n>]:PULSe:COUNt</n>	3-14
[SOURce <n>]:PULSe:POLarity</n>	3-14
[SOURce <n>]:PULSe:TRANsition[:LEADing]</n>	3-15
[SOURce <n>]:PULSe:TRANsition:TRAiling</n>	3-15
[SOURce <n>]:PULSe:TRANsition:STATe</n>	3-15
SOURce3:LIST:VOLTage	3-16
SOURce3:LIST:REPeat	3-16
SOURce3:LIST:COUNt	3-16
SOURce3:LIST:GENeration	3-17
SOURce3:LIST:SRATe	3-17
SOURce3:AM:SOURce	3-17
SOURce3:AM:STATe	3-18
SOURce3:ROSCillator:SOURce	3-18
OUTPut <n>:IMPedance</n>	3-18
OUTPut <n>:STATe</n>	3-19
OUTPut <n>:TTLTrg<y>:SOURce</y></n>	3-19
OUTPut <n>:TTLTrg<y>: STATe</y></n>	3-20
OUTPut3:FILTer[:LPASs]:FREQuency	3-20
OUTPut3:FILTer[:LPASs]:STATe	3-20

OUTPUT <n>:EXTernal:STATe</n>	3-21
TRIGger <n>[:SEQuence]:SOURce</n>	3-21
TRIGger <n>[:SEQuence]:SLOPe</n>	3-21
TRIGger <n>[:SEQuence]:DELay</n>	3-22
TRIGger <n>:GATE:SOURce</n>	3-22
TRIGger <n>:GATE:LEVel</n>	3-22
TRIGger <n>:GATE:DELay</n>	3-23
TRIGger <n>:GATE:STATe</n>	3-23
INITiate <n>:IMMediate</n>	3-23
CAlibration:ALL	3-23
DIGital3:STIMulus:PATTern[:VALue]	3-24
DIGital3:STIMulus:PATTern:REPeat	3-24
DIGital3:TIMing:CLOCk	3-24
DIGital3:COUNt	3-25
SYSTem:ERRor?	3-25
SYSTem:VERSion?	3-25
SYSTem:PRESet <n></n>	3-26
STATus:OPERation[:EVENt]?	3-26
STATUS:OF ERation:CONDition?	3-26
STATUS:OPERation:ENABle <nrf></nrf>	3-20
STATUS:OPERation:ENABle?	3-20
STATUS.OFERation.enAble?	3-27
	3-27
STATus:QUEStionable:CONDition?	
STATus:QUEStionable:ENABle <nrf></nrf>	3-27
STATus:QUEStionable:ENABle?	3-27
	3-28
SCPI Commands for Signal Types	3-28
DC Signal SCPI Commands	3-28
AC Signal SCPI Commands	3-29
SQUARE WAVE Signal SCPI Commands	3-30
TRIANGULAR WAVE Signal SCPI commands	3-31
RAMP Signal SCPI Commands	3-32
PULSED DC SCPI Commands	3-33
ARBITRARY WAVEFORM SCPI Commands	3-35
DIGITAL PATTERNS SCPI Commands	3-36
IEEE 488.2 Standard Common Commands	3-37
*CLS - Clear Status command	3-37
*ESE - Standard Event Status Enable Command	3-37
*ESE? - Standard Event Status Enable Query	3-37
*ESR? - Standard Event Status Register Query	3-37
*IDN? - Identification Query	3-37
*RST - Reset Command	3-37
*SRE - Service Request Enable Command	3-37
*SRE? - Service Request Enable Query	3-38
*STB - Read Status Byte Query	3-38
*TST? - Self Test Query	3-38
The SCPI Status Registers	3-38
The Status Byte Register (STB)	3-40
Reading the Status Byte Register	3-40
Clearing the Status Byte Register	3-40
Service Request Enable Register (SRE)	3-41
Standard Event Status Register (ESR)	3-41
Standard Event Status Enable Register (ESE)	3-42
Error Messages	3-43
	0.0

Performance Checks

Performance Checks	4-1
Environmental Conditions	4-1
Warn-Up Period	4-1
Initial Instrument Setting	4-1
Recommended Test Equipment	4-1
Performance Check Procedures	4-2
Self-Test	4-2
Auto Calibration	4-2
(J1-A7) Main Output	4-3
Frequency Accuracy	4-3
Amplitude Accuracy	4-4
DC Offset Characteristics	4-5
(J2-A1) PG1OUT	4-6
Frequency & Pulse Width Accuracy	4-6
Amplitude Accuracy	4-7
(J2-A5) PG2OUT	4-8
Frequency & Pulse Width Accuracy	4-8
Amplitude Accuracy	4-9
Trigger and Gate Characteristics	4-9
Triggered	4-10
Gated	4-12

Customer Support

Customer Support	5-1 5-1
Support Offices	6-1
Appendix A	

Model 3171 Specifications		A-1
---------------------------	--	-----

FIGURES

1-1	Model 3171 Firmware Block diagram	1-4
1-2	Model 3171 Hardware Block Diagram	1-6
2-1 \	/XI Logical Address Switch	2-3
2-2 I	Model 3171 Front Panel	2-10
3-1 \$	SCPI Status Register	3-39

TABLES

v

2-1 Arbitrary Waveform Generator Connector Reference	2-6
2-2 Pulse Generator Connector Reference	2-8
2-3 Status LED Reference	2-9
3-1 SCPI Command Quick Reference	3-6

Getting Started

What's In This Chapter	This chapter contains a general description of the VXIbus Model 3171 Waveform & Dual Output Pulse Generator and an overall functional description of the instrument. It also describes the front panel connectors and indicators.	
Introduction The Model 3171 is a single-slot VXI "C" size message base capable of providing simultaneous Arbitrary Waveform Output an Pulse Generator outputs. The Model 3171 is a SCPI (Standard C for Programmable Instruments) controlled message-based instruction $VXIplug&play$ compatibility. The Model 3171 Arbitrary Waveform Output is an Isolated (Floating) output that can be updated at a 0.15Hz to 80MHz. The two pulse generator outputs can be inder programmed and are simultaneously available from 0.5Hz to 50 Pulse Generators can output pulses and DC levels as large as 22 Ω . The Arbitrary Waveform Generator can also be used to standard waveforms. Standard waveforms are provided for the waveforms and frequencies:		s Arbitrary Waveform Output and two (2) del 3171 is a SCPI (Standard Commands ontrolled message-based instrument with odel 3171 Arbitrary Waveform Generator utput that can be updated at a rate from generator outputs can be independently usly available from 0.5Hz to 50MHz. The es and DC levels as large as 22V _{PP} into 50 nerator can also be used to generate
	Waveform	Frequency
	Sine wave	.001 Hz to 10 MHz
	Triangle wave	.001 Hz to 10 MHz
	Ramp wave	.001 Hz to 1 MHz
	Square wave	.001 Hz to 10 MHz
	Pulse DC	.001 Hz to 40 MHz
	output in bursts from 1 to 65538 arbitrary waveform generator output specified custom analog wavefor between ± 11V. The shape of the a sequence of numeric values loade Each successive memory location amplitude of the waveform point to memory for the ARB is brough	als is programmable. Waveforms can be 5 waveforms (or run continuously). The ut uses digital techniques to produce user rms and DC levels for any voltage level e waveform to be generated is defined by ed into the high speed waveform memory. on contains a value proportional to the b be generated. In addition, the waveform nt out as a 12-bit wide Digital Pattern enerator is output as TTL levels that can
	triggered, or may generate a cour Pulse Generators and the Arbitra allowing each output to be genera The delay from a trigger can be f and an ambiguity of less that	itrary Waveform Generator can be gated, inted burst of waveforms or pulses. Both ary Waveform Generator are triggerable ated after a precise programmable delay. from 150ns to 1s with a resolution of 2ns in 5ns. See Appendix A for complete for each generator is phase locked to the

Auto Calibration	The Model 3171 does not require manual adjustment in the field. There are no pots or adjustments on the unit that require periodic calibration. Auto Calibration is performed when commanded. Calibration factors are stored in an on-board EEPROM (Electrically Erasable and Programmable Read Only Memory). Amplitude values are measured by a 12-bit A/D with an accuracy of +/- 1-bit. Timing values are referenced to CLK10 on the VXI backplane. Auto Calibration requires less than 3s to perform. BIT should execute successfully prior to running Auto Calibration to prevent bad calibration factors from being generated. To provide the most accurate calibration factors, auto calibration should only be run after the unit has been powered
	factors, auto calibration should only be run after the unit has been powered on for a minimum of 30 minutes.

(BIT) Built In Test BIT is performed at power on and upon command. The Power on BIT is a subset of the commanded BIT due to the fact that power on BIT must execute in less than 5s for a VXI module. Commanded BIT detects 95% of all faults of the unit and executes in less than 30s. Because of Built in Test (BIT) and Auto Calibration, the Model 3171 is easy to maintain.

Understanding The Model 3171 Software

The Model 3171 is a fully programmable instrument. There are two ways to program the Model 3171, the first being low level programming of each individual parameter. The second alternative is to use the *VXIplug&play* driver for high level programming. The *VXIplug&play* driver simulates a mechanical front panel with the necessary push buttons, displays and dials to operate the Model 3171 as a bench-top instrument. The Model 3171 will not operate without being programmed. Therefore, it is recommended that the user become familiar with its basic features, functions and programming concepts as described in this and the following paragraphs.

The Model 3171 is a message-based VXIbus instrument. The unit accepts two types of message based commands: Standard Commands for Programmable Instruments (SCPI) commands and IEEE 488.2 Common commands. The IEEE 488.2 Common commands perform functions such as reset, self-test, status byte query, identification, etc. The SCPI commands perform functions such as setting up the instrument, closing relays, triggering, querying instrument states and retrieving data.

Figure 1 is a block diagram of the Model 3171 firmware. The Model 3171 firmware consists of four blocks of firmware that process the commands sent to the unit. These blocks are: I/O DRIVER, SCPI PARSER, EXECUTION CONTROL and DATA BUFFERS.

The I/O DRIVER firmware provides the interface with the VXIbus. The SCPI PARSER firmware parses the message-based commands received by the IO DRIVER and calls the EXECUTION CONTROL software. The EXECUTION CONTROL firmware processes the commands received and performs the action required. The DATA BUFFERS consist of the INPUT BUFFER, OUTPUT BUFFER, DATA QUEUE and ERROR QUEUE.

At power-up or when commanded to reset, the Model 3171 hardware and software is initialized to the following state:

- Hardware reset issued.
- Hardware output relays opened, disconnecting the ARB, PG1 and PG2 from their respective output pins.
- DC Offset programmed to 0.0V.
- Voltage Amplitudes programmed to 0.0V.
- Phase Lock Loops programmed to quiescent state.
- Calibration factors read from internal memory.
- Software variables initialized to default values.

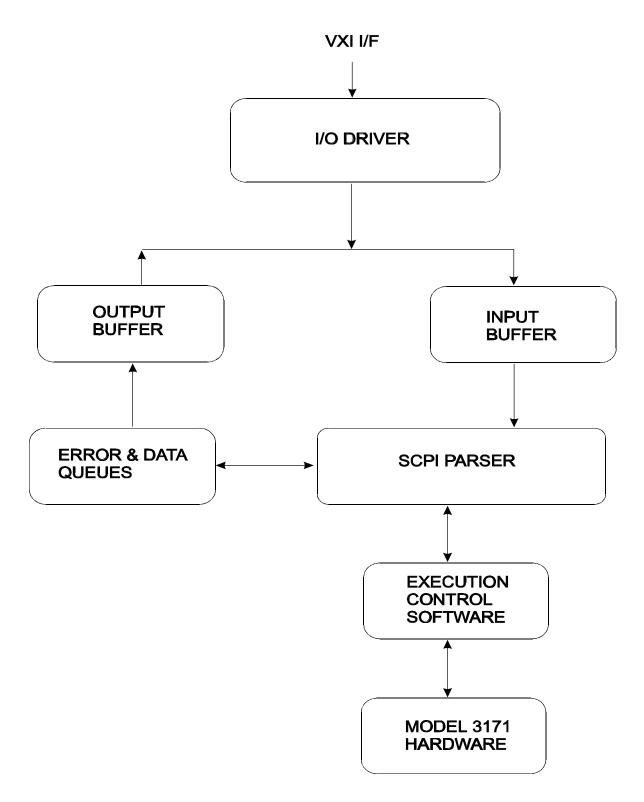


Figure 1-1 Model 3171 Firmware Block Diagram

Understanding The Model 3171 Hardware

Arbitrary Waveform Generator Signals	The following paragraphs describe each Arbitrary Waveform Generator input/output signals.
External Modulation Input	The external Modulation coax input (J1-A1) provides the capability to externally amplitude modulate the Main Output signal. Standard Waveforms of sine, triangle, and ramp can be amplitude modulated.
Trigger/Gate Input	The Trigger or Gate coax input (J1-A3) accepts signals that stimulate the Model 3171 to output waveforms on the Main Output. The trigger input is inactive when the instrument is in the continuous operating mode. When placed in trigger, gated or burst mode, the trigger input is made active and waits for the right condition to trigger the instrument. In trigger and burst modes, the trigger input is edge sensitive, i.e., it senses transitions from high to low or from low to high. The direction of the transition is programmable. The trigger input accepts TTL signals.
	In gated mode this input is level sensitive, i.e., the Model 3171 is gated when the level is high and idle when the level is low. The active gating state is programmable.
Main Output	The Main Output coax pin (J1-A7) provides standard and Arbitrary (coax pin) Waveforms. The output impedance of this output is selectable from <2 Ω , 50 Ω , or 93 Ω . The cable connected to this output should be terminated with a 50 or 93 Ω resistance. The output amplitude is specified when connected to a 50 Ω load. If the output is connected to a different load resistance, determine the actual amplitude from the resistance ratio of the internal output impedance to the load impedance
External Clock Input	The External Clock input (J1-20) when enabled, accepts fixed level TTL signals in the range of DC to 40MHz. When enabled, the external clock input replaces the internal clock generator and the output waveform will begin generating waveforms with clock rates that are present at the external input. Do not confuse the clock frequency with the frequency of the waveform. The actual frequency of the output waveform depends on the number of points that are allocated for the waveform. For example, if the external clock is 10MHz and the number of points used to generate one cycle of a waveform is 1000, the output frequency is 10KHz (10MHz divided by the number of points).

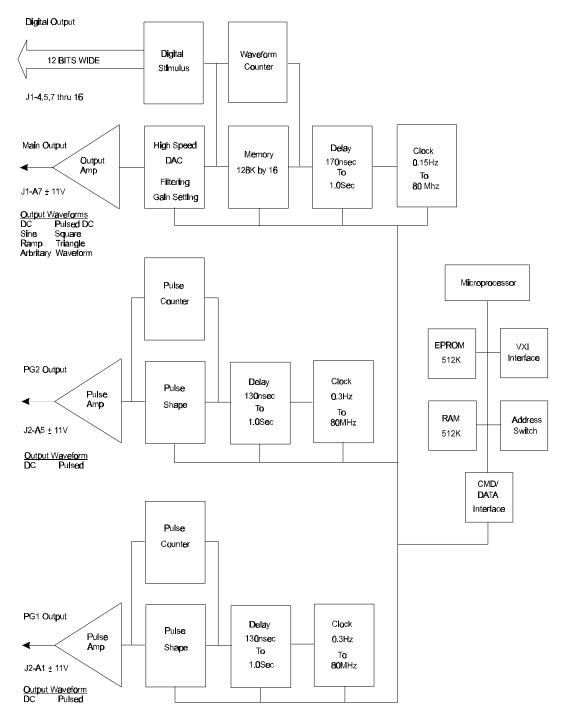


Figure 1-2 Model 3171 Hardware Block Diagram

ther instrumer ignal always a utput generate he location of rbitrary wave	nts (i.e., a appears es a sing the SYN eforms. F	4) generates a single TTL pulse for synchronizing an oscilloscope) to the output waveform. The SYNC at a fixed point relative to the waveform. The SYNC le point pulse for standard and arbitrary waveforms. IC signal is always the last location for standard and for digital patterns the SYNC output is controlled by gital word.
	• •	-5) is a TTL level signal used during digital pattern t is controlled by bit M13 of the 16-bit digital word.
When enabled by the Digital Stimulus Pattern Command, the below listed pins output TTL levels at the programmed sample rate. Up to 4095 different digital patterns can be stored in the waveform memory. Any of the patterns can be loaded multiple times using the repeat list command. The maximum depth of the patterns is 128K patterns. When the Digital Pattern output pins are enabled the main output is disabled.		
Pin J1-7 J1-8 J1-9 J1-10 J1-11 J1-12 J1-13 J1-14	Signal Dig0 Dig1 Dig2 Dig3 Dig4 Dig5 Dig6 Dig7	Description Controlled by M0 of the digital word. Controlled by M1 of the digital word. Controlled by M2 of the digital word. Controlled by M3 of the digital word. Controlled by M4 of the digital word. Controlled by M5 of the digital word. Controlled by M6 of the digital word. Controlled by M7 of the digital word.
	ther instrument ignal always a utput generation he location of rbitrary wave it M12 of the the Cursor of eneration. C Vhen enabled ins output T ifferent digital atterns can be naximum dep utput pins are <u>Pin</u> J1-7 J1-8 J1-9 J1-10 J1-11 J1-12	ther instruments (i.e., a ignal always appears utput generates a sing he location of the SYN rbitrary waveforms. F it M12 of the 16-bit di he Cursor output (J1 eneration. Cursor ou Vhen enabled by the l ins output TTL level ifferent digital patterns atterns can be loaded naximum depth of the utput pins are enabled $\frac{\text{Pin}}{\text{J1-7}} \frac{\text{Signal}}{\text{Dig0}}$ $\frac{J1-8}{\text{J1-9}} \frac{\text{Dig1}}{\text{J2}}$ $\frac{J1-10}{\text{Dig3}}$ $\frac{J1-11}{\text{J1-12}} \frac{\text{Dig5}}{\text{J1-13}}$

- J1-15 Dig8 J1-16 Dig9
- Controlled by M8 of the digital word. Controlled by M9 of the digital word

Pulse Generator Signals	The Pulse Generator I/O signals are located on J2 Combination D-sub connector which consists of five coaxial pins. Refer to the description below of the signals and their functions.
Pulse Generator 1 Output	The Pulse Generator 1 Output coax pin (J2-A1) provides Pulse and DC Waveforms. The output impedance is selectable from <2 Ω , 50 Ω , or 93 Ω . The cable connected to this output should be terminated with a 50 or 93 Ω resistance. The output amplitude is accurate when connected to a 50 Ω load. If the output is connected to a different load resistance, determine the actual amplitude by multiplying the amplitude setting by the resistance ratio of the internal output impedance to the load impedance.
Gate Input	The Gate Input (J2-A2) accepts signals to gate Pulse Generator 1 or Pulse Generator 2. This input is inactive if either Pulse Gen 1 or Pulse Gen 2 is not in the Gate Mode. The Gate signal can be programmed to be active high or active low. The input gate signal is a TTL level signal. The input is pulled up to +5V through a 4.7K Ω resistor.
Trigger Input	The Trigger input (J2-A3) accepts signals to trigger Pulse Generator 1 or Pulse Generator 2. This input is inactive if either Pulse Gen 1 or Pulse Gen 2 is not in the Trigger Mode. The Trigger signal can be programmed to be active on the rising or falling edge of the input signal. The input trigger signal is a TTL level signal. The input is pulled up to +5V through a 4.7K Ω resistor.
Clkout Output	Clkout (J2-A4) is a fixed level TTL signal capable of driving a 50 Ω load. The Clkout signal is derived directly from either the Pulse Gen 1 or Pulse Gen 2 output.
Pulse Generator 2 Output	The Pulse Generator 2 Output coax pin (J2-A5) provides Pulse and DC Waveforms. The output impedance is selectable from <2 Ω , 50 Ω or 93 Ω . The cable connected to this output should be terminated with a 50 or 93 Ω resistance. The output amplitude is accurate when connected to a 50 Ω load. If the output is connected to a different load resistance, determine the actual amplitude by multiplying the amplitude setting by the resistance ratio of the internal output impedance to the load impedance.
Operating Modes	Both Pulse Generators and the Arbitrary Waveform Generator can be gated, triggered or may generate a counted burst of waveforms or pulses. Both Pulse Generators and the Arbitrary Waveform Generator are triggerable allowing each output to be generated after a precise programmable delay. See Appendix A for complete specifications. The clock source for each generator is phase locked to the VXI 10MHz system clock.
Continuous Mode Operation	The Generator runs continuously at the selected frequency.
Burst Mode Operation	Upon receipt of a trigger, the selected waveform is generated a programmable number of times, from 1 to 65535, following a programmable delay period. See Appendix A for specifications.

Page Changed 4/22/98

Triggered Mode Operation

Gated Mode Operation

Arbitrary Waveform Generator Functional Description

In Triggered mode, each transition of the selected input trigger source stimulates the Model 3171 to generate a burst of a pre-selected number of waveform cycles after a programmable delay period.

In the Gated mode, Model 3171 will continuously output a waveform when th gate signal is true at the selected input trigger. The last output cycle will be completed when the gate signal changes to a false state. The time delay between trigger input and waveform output is programmable up to 1 second. See Appendix A for specifications.

Refer to **Figure 1-2**. The Model 3171 Arbitrary Waveform Generator Main Output is an Isolated (Floating) output that can be updated at a rate from 0.15Hz to 80MHz. The isolated output allows the output to be floated up to 250V. It also allows low noise signals to be generated without being affected by ground loops from the unit under test. The amplitude of the ARB Output is +/- 11V into 50 Ω with 5.4mV resolution. The ARB uses a 12-bit High Speed DAC to provide 4095 points of vertical amplitude resolution. The output signal can be routed directly from the output amplifier with an impedance less than 2 Ω or can be output through a 50 Ω or 93 Ω resistor. This output impedance is selectable under program control.

Arbitrary waveforms are generated by loading a sequence of digital values into the high speed memory. This memory is 16-bits wide and 128K (131072) locations deep. A waveform can consist of any number of points from a minimum of (1) point to (131072) points. Twelve bits of the waveform memory are used to control the High Speed DAC. The other 4bits are used as synchronization signals to the VXI trigger bus and as the Sync out and Cursor Out signals on the front panel. The other bit is used to provide a sync signal to an optional expansion card. Each successive memory location contains a digital value proportional to the amplitude of the waveform to be generated. A high resolution programmable time base is used to clock the memory address counter which accesses the next value to be output to the digital to analog converter (DAC). The DAC produces an analog equivalent to the digital value in the waveform memory thereby generating canned or complex arbitrary waveforms.

The output of the High Speed DAC is fed into a high speed analog multiplier to provide amplitude control of the canned waveforms. The Output of the multiplier is then fed into a selectable filter that can be set to no filter or to filters with cutoff frequencies of 22MHz, 2.2MHz, or 2MHz.

The waveform memory can also be output as a 12-bit wide digital pattern generator through TTL level drivers capable of sourcing and sinking 15mA per bit. A waveform counter allows the arbitrary waveform generator to output a burst of waveforms from 1 to 65535 or run continuously.

Page Changed 4/22/98

	The Arbitrary waveform generator also contains a delay generator to generate a delay after the receipt of a trigger prior to starting the output waveform. This generates delays from 170ns to 1s with a resolution of 2ns or 0.01% of the programmed value. The delay is accurate to \pm -5ns and is independent of the sample rate of the ARB.
ARB Clocking	The ARB clock is a synthesized clock source that is phase locked to the VXI 10MHz reference. It can be programmed from 40MHz to 80MHz with 4KHz resolution. The output of the clock source may be synchronized to an external trigger, the VXI TTLTRG Bus or a trigger from the onboard microprocessor.
	The synchronized output can then be divided by a digital divide by N counter to provide sample rates for the arbitrary waveform generator of 0.15Hz to 80MHz with a resolution of 100ppm worst case.
External Clocking	Output sample rate may be controlled by an external clock source. When external clocking is selected, the internal clock is bypassed and the waveform is generated using the external clock. Digital pattern outputs are updated on the rising edge of the external clock, analog levels are updated on the falling edge of the external clock.
Pulse Generators Functional Description	Pulse generators 1 and 2 are two independent 50MHz Pulse Generators that are available simultaneously
	Both Pulse Generators are capable of outputting pulses from 0.5Hz to 50MHz with voltage levels up to ± 11V. The pulse generators are identical except for programmable rise and fall time control. Pulse Generator #1 generates pulses with programmable rise and fall times from 5ns to 800µs in five (5) ranges. Pulse generator #2 generates pulses with programmable rise and fall times from 5ns to 40ns in one (1) range. The output pulse can be routed directly from the output amplifier with an impedance less than 2 Ω or can be output through a 50 Ω or 93 Ω resistor. This output impedance is selectable under program control. The output pulse can also be offset within the range of +/- 11V with a resolution of 5.4mV. Both Pulse generators can output DC levels or pulses of either polarity.

Page Changed 8/3/98

Each pulse generator consists of a synthesized clock source that is phase locked to the 10MHz VXIbus system clock and a divide by N digital divider that can divide down the clock source from 80MHz to 0.3Hz. Also included are a delay generator, a pulse shaper, a pulse counter to control bursts of pulses and an output amplifier. The delay generator can be positive or negative edge triggered by an external trigger or gate, the VXI TTLTRG bus or the on board microprocessor. The delay generator can generate delays from 120ns to 1s with a resolution of 2ns or 0.01% of the programmed delay, whichever is greater. The pulse shaper sets the pulse width and the rise and fall time for the pulse. Pulse widths can be programmed from 10ns to 1s with 2ns resolution or 0.01% of the programmed value, whichever is greater. The pulse counter allows the pulse generator to operate in a burst mode where N pulses can be generated each time the pulse generator is triggered. The number of pulses generated can be from 1 to 65535. The pulse counter can also be disabled to generate pulses continuously.

Both pulse generators can also be operated in a gate mode. In this mode the pulse generator will output pulses whenever the gate input is brought high and will stop the pulses when the gate input is brought low. If the generator is outputting a pulse while the gate input is brought low, the last complete pulse is outputed before the pulse generator stops. The pulse generator can be made to operate with either an active low or an active high gate signal.

VXIbus Interface The VXIbus Interface is provided by a microprocessor based Messagebased Interface daughter card.

> This card is 3.0 inches by 4.5 inches and is mounted on the Model 3171 Printed Wiring Board. This card contains a 68000 microprocessor, a VXIbus interface chip, 512K of RAM, 512K of EPROM and the associated buffers, decoders, and line drivers for interfacing to the VXIbus and the Model 3171. The control software for the Unit is resident in the EPROM. An address switch located on the Model 3171 PWB is read by the microprocessor to determine the logical address of the unit.

> The address switch is located in the upper right side of the module and can be accessed through a cutout in the top cover. The address switch is a DIP switch with 8 individual switches in one package. Each switch corresponds to a bit of an 8-bit word. The switch can be set to any setting from 1 to 255. When a switch is pushed to the right the switch is open, indicating a logic high to the microprocessor. The least significant digit of the address switch is located at the top of the switch and the most significant digit is located at the bottom. When all 8 switches in the package are pushed to the right the switch is set to 255. In this switch configuration the slot zero (0) controller of the VXI chassis will dynamically configure the address for the Model 3171. For any other switch configuration the unit will be assigned the logical address set by the address switch.

Items Shipped With The 3171

Qty	ltem	Racal Part Number	Vendor Part Number
1	User Manual (Disks included)	980805	-
1	VXI <i>plug&play</i> Software Driver (included with manual)	921526	-
1	LabVIEW Software Driver (included with manual)	921398-044	-
1	Backshell, Mating Connector for J2	602299-025	ITT Cannon DB121073-51
1	Backshell Mating Connector for J1	602299-050	ITT Cannon DD121073-53
1	J1 Mating Connector, 7 coax positions, 17 #20 AWG, solder cup signal positions	602300-005	ITT Cannon DDM24W7PK87
1	J2 Mating Connector, 5 coax positions	602300-024	ITT Cannon DBM5W5PK87
12	Coaxial Crimp Contacts for J1 & J2 Mating Connections. Use crimp tool ITT Cannon P/N 070051-0000 (not supplied) or equivalent. Mates with RG178B/U or RG196/U coax cable.	602300-900	ITT Cannon DM53740

Configuring The Instrument

Installation Overview	This chapter contains information and instructions necessary to prepare the Model 3171 for operation. Details are provided for initial inspection, grounding safety requirements, repacking instructions for storage or shipment, logical address selection and installation information.	
Unpacking and Initial Inspection	Unpacking and handling of the unit requires only normal precautions and procedures applicable to handling of sensitive electronic equipment. The contents of all shipping containers should be checked for included accessories and certified against the packing slip to determine that the shipment is complete.	
Safety Precautions	The following safety precautions should be observed before using this product and associated computer. Although some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous conditions may be present.	
	This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read the operating information carefully before using the product.	
	Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cables, connector jacks, or test fixtures. The American National Standard Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30V RMS, 42.4V peak or 60 VDC are present.	
WARNING	For maximum safety, do not touch the product, test cables, or any other instrument parts while power is applied to the circuit under test. ALWAYS remove power from the entire test system before connecting cables or jumpers, installing or removing cards from the computer, or making internal changes such as changing the module address.	
	Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) ground. Always keep your hands dry while handling the instrument.	

	perforn defects damag	strument has been inspected for mechanical and electrical nance before shipment from the factory. It is free of physical s and in perfect electrical order. Check the instrument for e in transit and perform the electrical procedures outlined in ction entitled Unpacking and Initial Inspection .
Long Term Storage or Repackaging For Shipment	immed contact	astrument is to be stored for a long period of time or shipped iately, proceed as directed below. If you have any questions, t your local Racal Instruments Representative or the Racal ments Customer Service Department.
	1.	Repack the instrument using the wrappings, packing material and accessories originally shipped with the unit. If the original container is not available, purchase replacement materials.
	2.	Be sure the carton is well-sealed with strong tape or metal straps.
	3.	Mark the carton with the model and serial number. If it is to be shipped, show sending and return address on two sides of the box.
REMINDER	If the instrument is to be shipped to Racal Instruments for repair, attach a tag to the instrument identifying the owner. Note the problem, symptoms, and service or repair desired. Record the model and serial number of the instrument. Show the work authorization order as well as the date and method of shipment. ALWAYS OBTAIN A RETURN AUTHORIZATION NUMBER FROM THE FACTORY BEFORE SHIPPING THE INSTRUMENT TO RACAL INSTRUMENTS	
Preparation For Use	contain	ation for use includes removing the Model 3171 from the her box, selecting the required logical address and installing dule in a VXIbus chassis.

Logical Address Selection

The VXIbus Chassis Resource Manager identifies modules in the system by the module's address. VXIbus logical addresses can range from 0 to 255, however, addresses 1 to 254 **only** are reserved for VXIbus modules. Logical address 0 is reserved for the Resource Manager. Logical address 255 permits the Resource Manager to dynamically configure the module logical address.

To change the Model 3171's logical address, use the 8-position DIP switch accessible from the upper right side of the module near the rear end of the case. Refer to **Figure 2-1**. The address switch is a DIP switch with 8 individual switches in one package. Each switch corresponds to a bit of an 8-bit word. The switch can be set to any setting from 1 to 255. When a switch is set to the "1" position the switch is open indicating a logic high to the microprocessor. The least significant digit of the address switch is located at the top of the switch and the most significant digit is located at the bottom. When all 8 switches in the package are set to the "1" position the address is set to 255. In this switch configuration the slot 0 controller of the VXI chassis will dynamically configure the address for the Model 3171. For any other switch configuration the unit will be assigned the logical address set by the address switch.

Racal Instruments ships the Model 3171 with logical address 2.

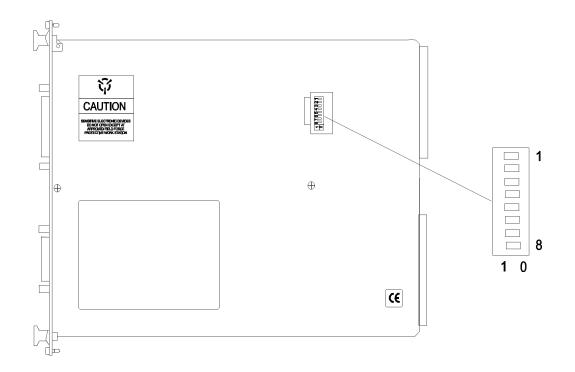


Figure 2-1 VXI Logical Address Switch

Installation	mainfra should the bac front p backpla	trument can be installed in any slot except slot 0 in a VXIbus me. When inserting the instrument into the mainframe, it be gently rocked back and forth to seat the connectors into kplane receptacle. The ejectors will be at right angles to the anel when the instrument is properly seated into the ane. Use two captive screws above and below the ejectors re the instrument into the chassis.
	After ir verifica	nstallation, perform an initial checkout and operational tion.
Installing The VXI <i>plug&play</i> Software	After the 3171 has been installed into the VXI mainframe, the VXI <i>plug&play</i> software may be used to communicate with the 3171. To install the software, first power on the mainframe, then perform the following operations:	
	1.	Start Windows (3.1 or later) on your computer if it is not already running.
	2.	Insert the VXI <i>plug&play</i> installation disk #1 into the 3-1/2" floppy disk drive.
	3.	Run the SETUP program on the installation disk.
	4.	Follow the instructions presented by the SETUP program.
	After the SETUP program has completed, the executable Soft Front Panel program may be run. To run the Soft Front Panel, ensure that the following conditions are met:	
	1.	The host computer is connected to the VXIbus mainframe via a MXI/VXI interface or a GPIB/VXI interface, or the computer is an embedded VXIbus computer.
	2.	VISA is loaded on your system. VISA is a library of functions which provide communication between a computer and instruments (GPIB and VXI). VISA may be obtained from the manufacturer of the MXI/VXI, GPIB/VXI or embedded computer. The VISA DLL should be installed in the (Windows) system directory for Windows 3.1.
	3.	The mainframe has power applied and the power switch has been turned ON.
	4.	For the MXI/VXI and embedded computers, the VXI Init and resource manager program have been run since VXIbus mainframe power was last turned ON.

To run the Soft Front Panel, "double-click" on the "3171 Front Panel" icon in the "VXIPNP" Windows Group.

If the four conditions above are met, the Soft Front Panel program will automatically locate the 3171 in the VXIbus Mainframe. The Soft Front Panel program will display the VXIbus logical address of the 3171, and the "Active" LED on the Soft Front Panel will be green.

Connecting To The Input/Output Connectors

The mating connectors, contacts, and backshells for the J1 and J2 connectors are supplied in the ship kit received with the Model 3171. Refer to **Tables 2-1, 2-2** and **Figure 2-2** for a description and pinout of the J1 and J2 connectors.

The crimp coax contacts accept RG178B/U or RG196/U coax cable. Use crimp tool ITT Cannon P/N 070051-0000 (not supplied) or equivalent to mate the coax contacts and cable.

The seventeen signal pins on the J1 connector are solder cup type and accept up to 20 AWG wire.

Arbitrary Waveform Generator Connector Reference

The J1 Combination D connector consists of 7 coaxial pins and 17 signal pins. All inputs and outputs from the J1 connector are isolated from the chassis ground. All return shields for each coaxial pin are connected to isolated floating ground. Pin 1, pin 6, and pin 17 of the signal pins are also connected to the isolated floating ground. The housing of the J1 connector is connected to chassis ground. **Table 2-1** describes each coaxial and signal pin.

Pin	Signal	Description
J1-A1	AMIN	External Modulation coax input when enabled provides capability to externally amplitude modulate the Main Output signal. Standard Waveforms of sine, triangle, and ramp can be amplitude modulated.
J1-A2,A4,A5,A6		Spares for future options
J1-A3	Trig/Gate	Trigger or Gate coax input accepts signals that stimulate the Model 3171 to output waveforms on the Main Output. The trigger input is inactive when the instrument is in the continuous operating mode. When placed in trigger, gated or burst mode, the trigger input is made active and waits for the right condition to trigger the instrument. In trigger and burst modes, the trigger input is edge sensitive, i.e., it senses transitions from high to low or from low to high. The direction of the transition is programmable. The trigger input accepts fixed level TTL signals. In gated mode, this input is level sensitive, i.e., the Model 3171 is gated when the level is high and idle when the level is low. The active gating state is programmable.
J1-A7	Main Output	The Main Output coax pin provides standard and arbitrary waveforms. The output impedance of this output is selectable from <2 Ω , 50 Ω , or 93 Ω . The cable connected to this output should be terminated with a 50 or 93 Ω resistance. The output amplitude is specified when connected to a 50 Ω load. If the output is connected to a different load resistance, determine the actual amplitude from the resistance ratio of the internal output impedance to the load impedance.
J1-1,6,17		Isolated Ground pins
J1-2	Ext Clk Input	External Clock input when enabled, accepts fixed level TTL signals in the range of DC to 40MHz. When enabled, the external clock input replaces the internal clock generator and the output waveform will begin generating waveforms with clock rates that are present at the external input. Do not confuse the clock frequency with the frequency of the waveform. The actual frequency of the output waveform depends on the number of points that are allocated for the waveform. For example, if the external clock is 10MHz and the number of points used to generate one cycle of a waveform is 1000, the output frequency will be 10KHz (10MHz divided by the number of points).

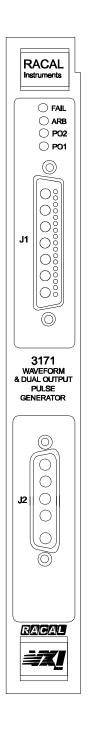
Pin	Signal	Description
J1-3		Spare for future option
J1-4	Sync Out	The SYNC output generates a single TTL pulse for synchronizing other instruments (i.e., an oscilloscope) to the output waveform. The SYNC signal always appears at a fixed point relative to the waveform. The SYNC output generates a single point pulse for standard and arbitrary waveforms. The location of the SYNC signal is always the last location for standard and arbitrary waveforms. For digital patterns the SYNC output is controlled by bit M12 of the 16- bit digital word.
J1-5	Cursor Out	The Cursor output is a TTL level signal used during digital pattern generation. Cursor out is controlled by bit M13 of the16-bit digital word.
J1-7 thru J1-16	Digital Pattern Output Signals	When enabled by the Digital Stimulus Pattern Command, the following pins output TTL levels at the programmed sample rate. Up to 4095 different digital patterns can be stored in the waveform memory. Any of the patterns can be loaded multiple times using the repeat list command. The maximum depth of the patterns is 128K patterns. When the Digital Pattern output pins are enabled the main out is disabled.
J1-7	Dig0	Controlled by M0 of the digital word.
J1-8	Dig1	Controlled by M1 of the digital word.
J1-9	Dig2	Controlled by M2 of the digital word.
J1-10	Dig3	Controlled by M3 of the digital word.
J1-11	Dig4	Controlled by M4 of the digital word.
J1-12	Dig5	Controlled by M5 of the digital word.
J1-13	Dig6	Controlled by M6 of the digital word.
J1-14	Dig7	Controlled by M7 of the digital word.
J1-15	Dig8	Controlled by M8 of the digital word.
J1-16	Dig9	Controlled by M9 of the digital word.

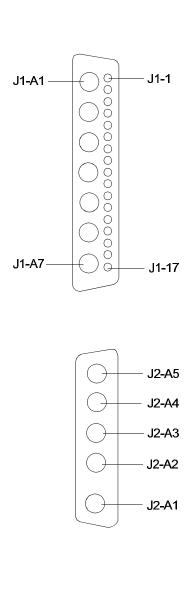
Г

The J2 Combination D connector consists of five coaxial pins. All coaxial shields in the J2 connector are tied to chassis ground.

Refer to Table 2-2 for a description of each coax pin.

Pin	Signal	Description
J2-A1	PG1OUT	Pulse Generator 1 Output coax pin provides Pulse and DC Waveforms. The output impedance is selectable from <2 Ω , 50 Ω , or 93 Ω . The cable connected to this output should be terminated with a 50 or 93 Ω resistance. The output amplitude is accurate when connected to a 50 Ω load. If the output is connected to a different load resistance, determine the actual amplitude by multiplying the amplitude setting by the resistance ratio of the internal output impedance to the load impedance.
J2-A2	GATE	Gate Input accepts signals to gate Pulse Generator 1 or Pulse Generator 2. This input is inactive if either Pulse Generator 1 or Pulse Generator 2 is not in the Gate Mode. The Gate signal can be programmed to be active high or active low. The input gate signal is a TTL level signal. The input is pulled up to +5V through a 4.7K Ω resistor.
J2-A3	TRIGIN	Trigger input accepts signals to trigger Pulse Generator 1 or Pulse Generator 2. This input is inactive if either Pulse Generator 1 or Pulse Generator 2 is not in the Trigger Mode. The Trigger signal can be programmed to be active on the rising or falling edge of the input signal. The input trigger signal is a TTL level signal. The input is pulled up to +5V through a 4.7K Ω resistor.
J2-A4	CLKOUT	Clkout is a fixed level TTL signal capable of driving a 50 Ω load. The Clkout signal is derived directly from either the Pulse Generator 1 or Pulse Generator 2 output.
J2-A5	PG2OUT	Pulse Generator 2 Output coax pin provides Pulse and DC Waveforms. The output impedance is selectable from <2 Ω , 50 Ω , or 93 Ω . The cable connected to this output should be terminated with a 50 or 93 Ω resistance. The output amplitude is accurate when connected to a 50 Ω load. If the output is connected to a different load resistance, determine the actual amplitude by multiplying the amplitude setting by the resistance ratio of the internal output impedance to the load impedance


Table 2-2 Pulse Generator Connector Reference


Status LED Reference

Refer to **Table 2-3** for a description of the front panel status LED's.

Color	LED Indicator	Description		
Red	FAIL	This indicator illuminates red when the VXI backplane signal SYSFAIL* is asserted (low). The 3171 asserts this signal during the power-on-self-test that occurs during the first 5 seconds after power is applied to the system.		
Green	ARB	ARB LED illuminates when the Arbitrary Waveform Generator output is on.		
Green	PG2	PG2 LED illuminates when the Pulse Generator 2 output is on.		
Green	PG1	PG1 LED illuminates when the Pulse Generator 1 output is on.		

Table 2-3 Status LED Reference

Revised May 26, 2000

Figure 2-2 Model 3171 Front Panel

Configuring The Instrument 2-10

Using The Instrument

Overview	This chapter contains information about how to operate the Model 3171. Unlike bench-type instruments, the Model 3171 must be programmed to turn on functions, change parameters and configure various operating modes. The instrument is programmed using a set of SCPI commands. A list of SCPI commands and their operation is described in this chapter. Also provided are a list of SCPI Commands for each signal type with examples on how to program the Model 3171.	
Output Termination	During use, output connectors must be properly terminated to minimize signal reflection or power loss due to an impedance mismatch. Proper termination is also required for an accurate amplitude level at the each output connector. Use 50 S cables and terminate with terminating resistors at the far end of the cables	
Output Protection	The Model 3171 provides protection for internal circuitry connected to the output connectors. Refer to the specifications in Appendix A to determine the level of protection associated with each output connector.	
Power On/Reset Defaults	At power on, or, as a result of a software reset, the Model 3171 defaults to the conditions shown below:	
	Hardware reset issued.	
	Hardware output relays open disconnecting the ARB, PG1 and PG2 from their respective output pins.	
	DC Offset programmed to 0.0V.	
	Voltage Amplitudes programmed to 0.0V.	
	Phase Lock Loops programmed to quiescent state.	
	Calibration factors read from internal memory.	
	Software variables initialized to default values.	
	Refer to section Model 3171 SCPI Commands and the SCPI Commands For Signal types, below for a software description of the Model 3171 and SCPI command examples.	

Initializing The Instrument	The IEEE-488.2 *RST command resets the instrument hardware an firmware to its power on/reset default state.				
	Syntax: *RS	Т			
	when the *Cl and IEEE-4	8.2 *CLS command may be used to clear the instrument. LS command is received the instrument clears the SCPI 88.2 defined status event registers, and empties all ept the output queue.			
	Syntax: *CLS	5			
Self-Test	executed an	88.2 *TST? query causes an internal self-test to be d places a response in the output queue. A value of "0" at the self-test passed. A non-zero value indicates that has failed.			
	Syntax: *TST?				
	Consult the Self-test section of the Performance Check Procedures for additional information on self-test.				
Generating a Waveform		generates waveforms when it receives the SCPI >" commands.			
	Example:	To generate a 10 Hz square wave with a 1V amplitude using the Arbitrary Waveform Generator (n=3), send the following commands:			
		*RST :SOUR3:FUNC:SHAP SQU :SOUR3:VOLT:TRIG 1 :SOUR3:FREQ 10			
Outputting a Waveform	The 3171 connects the instrument (PG1, PG2 or Arbitrary Wa Generator) to the respective output pin when the OUTPut <n>: ON command is received.</n>				
	Example:	To connect the 10Hz square wave from the above example to the output pin (J1-A7) for use in a 50S system send the following:			
		:OUTP3:IMP 50 :OUTP3:STAT ON			
Triggering the Waveform Output	The 3171 is TRIGger <n></n>	programmed to trigger the output of waveforms using the commands:			
•	Example:	To software trigger the 10Hz square wave Arbitrary Waveform Generator output from the above example send the following command.			
		:TRIG3:SOUR:IMM :INIT3:IMM			

When software triggering is selected the INITiate <n> IMMediate command is the trigger event.

Example: To trigger the Arbitrary Waveform Generator on the negative edge of the VXI TTLTrg7 backplane signal with a 1ms delay, send the following:

:TRIG3:SEQ:SLOP:NEG :TRIG3:SEQ:DEL 1E-3 :TRIG3:SEQ:SOUR:TTLT7

What To Do Now To write low level code to operate the Model 3171, follow the instructions and examples in this chapter to understand the meaning and response that each command may generate.

Further examples are embedded in the SCPI command definitions below in this chapter.

Refer to the section **SCPI Commands For Signal Types**, later in this chapter for the SCPI commands and recommended sequences for generating specific waveform shapes, (e.g., square waves, sine waves, etc).

Model 3171 Standard Commands for Programmable Instruments (SCPI) Commands

SCPI Command Format

The SCPI command structure is a hierarchical structure also know as a tree structure that consists of a top level (or root) command, one or more lower level commands, and their parameters. The following example shows part of a typical subsystem :

[SOURce<n>] :FUNCtion :SHAPe DC | SINusoid | SQUare | TRIangular | RAMP | PULSe | USER | DIGital :SHAPe? :VOLTage :MODE FIXed | LIST [:LEVel] :TRIGgered [:AMPLitude] <numeric value>

SOURce is the root command, :FUNCtion and :VOLTage are a second level, :SHAPe, :LEVel and MODE are a third level, :TRIGgered is a fourth level and [:AMPLitude] is a fifth level command. Commands :SHAPe,:MODE and [:AMPLitude] have parameters.

Compound Command Separator	A colon (:) always separates one command from the next level command in a command as shown below:	
	SOURce:VOLTage:MODE FIXed	
	Colons separate the root command from the second level command (SOURce:VOLTage) and the second level from the third level (VOLTage:MODE).	
Abbreviated Commands	The command syntax show most commands as a combination of upper and lower case letters. The upper case letters indicate the abbreviated or short form for the command. Upper case and lower case (the whole keyword) indicate the long form of the command.	
	For example, if the command syntax shows VOLTage, then VOLT and VOLTAGE are both acceptable forms. Other forms of VOLTage, such as VOLTA will generate an error	
Optional Commands	Square brackets ([]) are used to enclose a keyword that is optional when programming the command; that is, the instrument does the same thing whether the option node is omitted by the programmer or not. Such a node is called a default node.	
	For example:	
	[SOURce <n>] :FUNCtion :SHAPe DC SINusoid SQUare TRIangular RAMP PULSe USER</n>	
	The root command SOURce is an optional command. SOURce:FUNCtion:SHAPe DC and FUNCtion:SHAPe DC will both result in the function being set to DC Signal.	
	The braces ({}), or curly brackets, are used to enclose one or more parameters that may be included zero or more times.	
	The vertical bar () can be read as "or" and is used to separate alternative parameter options.	
Numeric Suffixes	Some commands allow numeric suffices, which are used to identi which sub-instrument of the Model 3171 is being programmed. The Model 3171 is one instrument module but contains three separations instruments; Pulse Generator 1 (PG1), Pulse Generator 2 (PG2) and Arbitrary Waveform Generator (ARB). Commands like the [SOURce <n>] allow a numeric suffix. The default numeric suffix is</n>	
	CommandInstrumentSOURce1Pulse Generator 1SOURce2Pulse Generator 2SOURce3Arbitrary Waveform Generator	

Parameters	<numeric value="">: decimal representation of a number including optional signs.</numeric>
	{, <numeric value="">} : zero or more decimal numbers.</numeric>
	Discrete value: mnemonic parameters (character strings) used to represent a valid setting. For example DC, SINusoid, SQUare, FIXed, NORMal, etc.
	Boolean Program Data: ON (1) or OFF (0)
Queries	The query form of a command is generated by appending a question mark to the last keyword. All commands, unless otherwise noted, have an additional query form. For example SOURce1:FUNCtion:SHAPe DC would set the function for Pulse Generator 1 to DC Signal. The SCPI command SOURce1:FUNCtion:SHAPe? would return the result of what the function was previously set to, or DC for the above shape setting.

	Default	Ins	strum	ent
SCPI Command	Parameter			ARB
	Values		n=2	
[SOURce <n>]</n>				
:FUNCtion				
:SHAPe	DC	t i		х
DC		х	х	x
SINusoid				х
SQUare				х
TRIangular RAMP				X
PULSe		x	x	X X
USER		^	^	x
DIGital				x
:POLarity NORMal INVerted	NORM			х
:COUNt <numeric value=""></numeric>	1			х
:VOLTage				
:MODE	FIX			
FIXed		х	х	х
LIST				Х
[:LEVel]				
[:IMMediate]				
[:AMPLitude] <numeric value=""></numeric>	0.00	Х	х	Х
:TRIGgered				
[:AMPLitude] <numeric value=""></numeric>	0.00	х	х	Х
:OFFSet <numeric value=""></numeric>	0.00	х	х	х
:REFerence				
:STATe ON OFF	OFF			х
:FREQuency				
:MODE CW	CW	х	х	х
[:CW] <numeric value=""></numeric>	+1.00000e+03			х
:PULSe				
:PERiod <numeric value=""></numeric>	+1.25000e-08	х	х	х
:WIDTh <numeric value=""></numeric>	+1.00000e-08	х	х	х
:COUNt <numeric value=""></numeric>	1	х	х	х
:POLarity NORMal INVerted	NORM	х	х	х
:TRANsition				
[:LEADing] <numeric value=""></numeric>	+5.00000e-09	х	х	
:TRAiling <numeric value=""></numeric>	+5.00000e-09	х	х	
Page Changed 8/3/98				

Table 3-1 SCPI Command Quick Reference

	Default	Ins	strum	ent
SCPI Command	Parameter Values	PG1	PG2	ARB
	values	n=1	n=2	n=3
:STATe ON OFF	Not Implemented	х	х	
:LIST				
:VOLTage <numeric value=""> {,<numeric value="">}</numeric></numeric>	No Reset Value			х
:REPeat <numeric value=""> {,<numeric value="">}</numeric></numeric>	No Reset Value			х
:COUNt <numeric value=""></numeric>	1			х
:GENeration DSEQuence	DSEQ			х
:SRATe <numeric value=""></numeric>	No Reset Value			х
:AM				
:SOURce EXTernal	INT			х
:STATe ON*OFF	OFF			х
:ROSCillator:SOURce INTernal*EXTernal	OFF			х
OUTPut <n></n>				
:IMPedance 0 50 93	0	х	х	х
[:STATe] ON OFF	OFF	х	х	х
:TTLTrg <y></y>				
:SOURce INT <z></z>	INT2	х	х	х
:STATe ON OFF	OFF	х	х	х
:FILTer				
[:LPASs]				
:FREQuency <numeric value=""></numeric>	22.0e6			х
:STATe ON OFF	OFF			х
:EXTernal				
:STATe ON*OFF	OFF	х	х	
			-	
TRIGger <n></n>				
[:SEQuence]				
:SOURce EXTernal TTLTrg <y> IMMediate</y>	IMM	х	х	х
:SLOPe POSitive NEGative	POS	х	х	х
:DELay <numeric value=""></numeric>	+1.00000e-08	х	х	х
:GATE				
:SOURce TTLTrg <y></y>	TTLT8	х	х	х
:LEVel HIGH*LOW	HIGH	х	х	х
:DELay <numeric value=""></numeric>	-2.01e+153	х	х	х

	Default	Ins	strum	ent
SCPI Command	Parameter Values		PG2	ARB
	values	n=1	n=2	n=3
:STATe ON*OFF	OFF	х	х	х
INITiate <n></n>				<u> </u>
:IMMediate	No Reset Value	Х	Х	Х
CALibration				
:ALL	No Reset Value	х	х	х
DIGital3:				
:STIMulus				
:PATTern				
[:VALue] <numeric value=""> {,<numeric value="">}</numeric></numeric>	No Reset Value			х
:REPeat <numeric value=""> {,<numeric value="">}</numeric></numeric>	No Reset Value			х
:TIMing				
:CLOCk <numeric value=""></numeric>	-6.87983e43			х
:COUNt <numeric value=""></numeric>	1			х
SYSTem				
:ERRor?	0," No Error"	х	х	х
:VERSion?	1992.0	х	х	х
:PRESet <n></n>	No Reset Value	х	х	х
STATus				
:OPERation				
[:EVENt]?	0	х	х	х
:CONDition?	Not Implemented	х	х	х
:ENABle <nrf></nrf>	0	х	х	х
:ENABle?	0	х	х	х
:QUEStionable				
[:EVENt]?	0	х	х	х
:CONDition?	Not implemented	х	х	х
:ENABle <nrf></nrf>	0	х	х	х
:ENABle?	0	х	х	х
:PRESet	No Reset Value	х	х	х

Table 3-1 SCPI Command Quick Reference

[SOURce <n>]:FUNCtion: SHAPe</n>	commands als	Id controls the shape of the output signal. This so denotes the start of a SCPI sequence. If it is not ast value programmed will be used.	
		Rce <n>]:FUNCtion:SHAPe DC SINusoid SQUare AMP PULSe USER DIGital</n>	
	Parameters:	DC - DC SIGNAL SINusoid - AC SIGNAL SQUare - SQUARE WAVE TRIangular - TRIANGULAR WAVE SIGNAL RAMP - RAMP SIGNAL PULSE - PULSED DC USER - WAVEFORM (arbitrary waveform) DIGital - Digital pattern	
	Default: DC		
	For Pulse Generator 1 (n=1), PULSe and DC are allowed. For Pulse Generator 2 (n=2), PULSe and DC are allowed.		
	For Arbitrary Waveform Generator (n=3), DC, SINusoid, SQUare, TRIangular, RAMP, PULSe, USER and DIGital are allowed.		
	•	URce1:FUNCtion:SHAPe PULSe - Sets the output e Generator 1 to Pulsed DC.	
SOURce3:FUNCtion:	This command	controls the polarity of the output signal.	
POLarity	Syntax: SOURce3:FUNCtion:POLarity NORMal INVerted		
	Parameters:	NORMal - A positive going signal is generated. INVerted - A negative going signal is generated.	
	Default: NORM		
	(n=3) and is u	l is allowed only with the Arbitrary Waveform Generator used to control the polarity of the SINusoid, SQUare, nd RAMP signals.	
	•	IRce3:FUNCtion:POLarity INVereted - Sets the polarity o inverted mode.	

SOURce3:FUNCtion: COUNt	This commar repeated.	nd controls the number of times that the signal is		
	Syntax: SOUF	Rce3:FUNCtion:COUNt <numeric value=""></numeric>		
	Parameters: <	numeric value> = 0 - Continuous signal 1 to 65535 bursts		
	Default: 1			
	(n=3) and is u	This command is allowed only with the Arbitrary Waveform Generator (n=3) and is used to control the polarity of the SINusoid, SQUare, TRIangular, and RAMP signals.		
	Example: SOU	JRce3:FUNCtion:COUNt 0 - Continuous signal.		
[SOURce <n>]:VOLTage: MODE</n>	amplitude setti the LEVel cor	nd determines which set of commands control the ing. If FIXed is selected the amplitude is determined by mmand. If LIST is selected, the amplitude values are an amplitude list specified using the LIST command.		
	Syntax: [SOURce <n>]:VOLTage:MODE FIXed LIST</n>			
	Parameters:	FIXed -Voltage amplitude is determined by value in the LEVel command. The FIXed mode is used with all wave shapes except USER.		
		LIST - Voltage amplitude is determined by the values specified in the LIST3:VOLTage command. This mode is used only with the Arbitrary Waveform Generator (n=3) and a signal type of USER.		
	Default: FIX			
	Example: SOl	JRce1:VOLTage:MODE FIXed - selects fixed mode.		

[SOURce <n>]:VOLTage [:LEVel][:IMMediate] [:AMPLitude]</n>	This command controls the voltage a part of a sequence of SCPI commar to output a DC SIGNAL. It program voltage level.	nds that programs the instrument
	Syntax: [SOURce <n>]:VOLTage[:LE <numeric value=""></numeric></n>	EVel][:IMMediate][:AMPLitude]
	Parameters: <numeric value=""> = -1</numeric>	1.0V to + 11.0V
	Default: 0.00	
	This command is used with Pulse Ge 2 (n=2), and the Arbitrary Waveform	
	Example: SOURce3:VOLTage:LEVe DC Signal Amplitude for Arbitrary Wa instrument is programmed to output of 5.0V.	aveform Generator to 5.0V. The
[SOURce <n>]:VOLTage [:LEVel]:TRIGgered [:AMPLitude]</n>	This command controls the pea programmed signal. This comman PULSe, SINusoid, SQUare, TRIang value is stored in internal memory to signal setup sequence. The output v	nd is used with signal types of jular, and RAMP. The amplitude be programmed at the end of the
	Syntax: [SOURce <n>]:VOLTage[:L <numeric value=""></numeric></n>	EVel]:TRIGgered[:AMPLitude]
	Parameter: <numeric value=""> =</numeric>	0 to 22.0V for PULSe 0 to 11.0V for SINusoid, SQUare, TRIangular, and RAMP
	Default: 0.00	
	This command is used with Pulse Ge 2 (n=2), and the Arbitrary Waveform	
	Example: SOURce3:VOLTage:LEV Sets the peak to peak amplitude val	-

[SOURce <n>]:VOLTage [:LEVel]:TRIGgered: OFFSet</n>	The command SQUare, TRIa memory to be	d control the DC-OFFSET of the programmed signal. d is used only with signal types of PULSe, SINusoid, ngular, and RAMP. The offset value is stored in internal programmed at the end of the signal setup sequence. Itage range is -11.0V to +11.0V.
	Syntax: [SOUF value>	<pre>Rce<n>:VOLTage[:LEVel]:TRIGgered:OFFSet <numeric< pre=""></numeric<></n></pre>
	Parameter: <n< th=""><th>umeric value> = -11.0V to +11.0V</th></n<>	umeric value> = -11.0V to +11.0V
	Default: 0.00	
		is used with Pulse Generator 1 (n=1), Pulse Generator ne Arbitrary Waveform Generator (n=3).
	•	Rce1:VOLTage:LEVel:TRIGgered:OFFSet -3.0 - Sets ET for Pulse Generator 1 to -3.0V.
SOURce3:VOLTage: REFerence:STATe		d is used to control the connection of the external dulation signal to the Arbitrary Waveform Generator.
	Syntax: SOUR	ce3:VOLTage:REFerence:STATe ON OFF
	Parameter:	ON - Connects External Amplitude Modulation to the Arbitrary Waveform Generator. OFF - Disconnects External Amplitude Modulation.
	Default: OFF	
	This command only.	is used with the Arbitrary Waveform Generator (n=3)
	Example: SOL	JRce3:VOLTage:REFerence:STATe OFF.
[SOURce <n>]:FREQuenc y:MODE</n>		does not control anything and is included to document mode. The only mode allowed is CW.
	Syntax: [SOUF	Rce <n>]:FREQuency:MODE CW</n>
	Parameter:	CW
	Default: CW	
		is used with Pulse Generator 1 (n=1), Pulse Generator ne Arbitrary Waveform Generator (n=3).
	Example: SOL	JRce1:FREQuency:MODE CW

SOURce3:FREQuency [:CW]	This command is used to program the frequency valu programmed signal and is valid with signal types SINusoid TRIangular, and RAMP. This command marks the end of sequence. The instrument will be programmed to the signa values specified.	
	Syntax: SOURce3:FREQuency[:CV	V] <numeric value=""></numeric>
	Parameter: <numeric value=""> =</numeric>	0.001 to 10e6 for SINusoid, SQUARE, and TRIangular 0.001 to 1e6 for RAMP
	Default: +1.00000e+03	
	This command is used with the Arb only.	itrary Waveform Generator (n=3)
	Example: SOURce3:FREQuency: programmed to the specified signal	
[SOURce <n>]:PULSe: PERiod</n>	This command is used to program a signal and is valid only with the PU marks the end of a signal setup so programmed to the values specified	JLse signal type. This command equence. The instrument will be
	Syntax: [SOURce <n>]:PULSe:PER</n>	iod <numeric value=""></numeric>
	Parameter: <numeric value=""> =</numeric>	20.0e-9 to 2 Pulse Generator 1 20.0e-9 to 2 Pulse Generator 2 25.0e-9 to 2 Arbitrary Waveform Generator
	Default: +1.25000e-08	
	This command is used with Pulse G 2 (n=2), and the Arbitrary Waveforr	
	Example: SOURce1:PULSe:PERic programmed to a period of 1µS.	od 1e-6 - Pulse Generator 1 is

[SOURce <n>]:PULSe :WIDTh</n>	This command is used to program the pulse width value of the pulsed dc signal and is valid with a signal type of PULSe. The pulse width is stored in internal memory and will be used when the setup sequence has been competed with the programming of the period.
	Syntax: [SOURce <n>]:PULSe:WIDTh <numeric value=""></numeric></n>
	Parameter: <numeric value=""> = 10e-9 to1(Pulse Generator 1)10e-9 to1 (Pulse Generator 2)10e-9 to1(Arbitrary Waveform Generator)</numeric>
	Default: +1.00000e-08
	This command is used with Pulse Generator 1 ($n=1$), Pulse Generator 2 ($n=2$), and the Arbitrary Waveform Generator ($n=3$).
	Example: SOURce1:PULSe:WIDTh 500E-9 - Pulse Generator 1 is programmed to a pulse width of 500ns.
[SOURce <n>]:PULSe :COUNt</n>	This command is used to program the number of times that the pulse is repeated.
	Syntax: [SOURce <n>]:PULSe:COUNt <numeric value=""></numeric></n>
	Parameter: <numeric value=""> = 0 - Continuous Pulse 1 to 65535 bursts</numeric>
	Default: 1
	This command is used with Pulse Generator 1 ($n=1$), Pulse Generator 2 ($n=2$), and the Arbitrary Waveform Generator ($n=3$).
	Example: SOURce1:PULSe:COUNt 0 - Pulse Generator 1 is programmed to have a continuous signal.
[SOURce <n>]:PULSe :POLarity</n>	This command is used to program the polarity of the pulsed DC signal.
	Syntax: [SOURce <n>]:PULSe:POLarity NORMal INVerted</n>
	Parameters: NORMal - A positive going signal is generated. INVerted - A negative going signal is generated.
	Default: NORM
	This command is used with Pulse Generator 1 ($n=1$), Pulse Generator 2 ($n=2$), and the Arbitrary Waveform Generator ($n=3$).
	Example: SOURce1:PULSe:POLarity NORMal - Pulse Generator 1 is programmed to generate a positive going pulse.

[SOURce <n>]:PULSe :TRANsition[:LEADing]</n>	This command is used to program the rise-time of the pulsed DC signal.
	Syntax: [SOURce <n>]:PULSe:TRANsition[:LEADing] <numeric value=""></numeric></n>
	Parameter: <numeric value=""> = 5e-9 to 8e-4</numeric>
	Default: +5.00000e-09
	This command is be used with Pulse Generator 1 (n=1), and Pulse Generator 2 (n=2).
	Example: SOURce1:PULSe:TRANsition:LEADing 1E-6 - Pulse Generator 1 is programmed to a rise-time of 1µs.
[SOURce <n>]:PULSe :TRANsition:TRAiling</n>	This command is used to program the falltime of the pulsed DC signal.
	Syntax: [SOURce <n>]:PULSe:TRANsition:TRAiling <numeric value=""></numeric></n>
	Parameter: <numeric value=""> = 5e-9 to 8e-4</numeric>
	Default: +5.00000e-09
	This command is used with Pulse Generator 1 (n=1), and Pulse Generator 2 (n=2).
	Example: SOURce1:PULSe:TRANsition:TRAiling 1E-6 - Pulse Generator 1 is programmed to a rise-time of 1µs.
[SOURce <n>]:PULSe: TRANsition:STATe</n>	This command is used to enable or disable the programming of the rise/fall time for the pulsed DC signal. When the rise/fall-time are disabled (STATe is OFF), the minimum rise/fall times are programmed.
	Syntax: [SOURce <n>]:PULSe:TRANsition:STATe ON OFF</n>
	Parameter: <numeric value=""> = ON - Enable use of the pulse transition times specified by the LEADing and TRAiling values. OFF - Disable use of pulse transition times and use the default values.</numeric>
	Default: Not implemented
	This command is used with Pulse Generator 1 (n=1), and Pulse Generator 2 (n=2).
	Example: SOURce1:PULSe:TRANsition:STATe ON - Enable programming of the rise/fall time values.

Page Changed 8/3/98

SOURce3:LIST:VOLTage	This command is used to program the amplitude values of an arbitrary waveform. The maximum list length is 4095 values.
	Syntax: SOURce3:LIST:VOLTage <numeric value="">{,<numeric value="">}</numeric></numeric>
	Parameter: <numeric value=""> = -11.0 to +11.0</numeric>
	Default: No reset value
	This command is used with the Arbitrary Waveform Generator (n=3).
	Example: SOURce3:LIST:VOLTage -11.0, 11.0, 5.0, -5.0, 0.0 - An arbitrary waveform with 5 different amplitude values (-11.0V, +11.0V 5.0V, -5.0V, 0.0V). The amplitude values are stored in internal waveform memory.
SOURce3:LIST:REPeat	This command is used to program the number of times each amplitude level is repeated. The maximum length is 4095 values. There is no query for this command.
	Syntax: SOURce3:LIST:REPeat <numeric value=""> {,<numeric value="">}</numeric></numeric>
	Parameter: <numeric value=""> = 1 to 32767</numeric>
	Default: No reset value
	This command is used with the Arbitrary Waveform Generator (n=3).
	Example: SOURce3:LIST:REPeat 1,5,10,20,300 - An arbitrary waveform will have 5 different repeat values (1,5,10,20,300). The amplitude values specified for each point will be repeated the specified number of times. The repeat values will be stored in internal memory. The amplitude list length specified by the LIST:VOLTage command and the repeat list length specified by the LIST:REPeat command must have the same list lengths.
SOURce3:LIST:COUNt	This command is used to specify the number of times an arbitrary waveform is repeated. There is no query for this command.
	Syntax: SOURce3:LIST:COUNt <numeric value=""></numeric>
	Parameter: <numeric value=""> = 0 - Continuous 1 to 65535 bursts</numeric>
	Default: 1
	This command is used with the Arbitrary Waveform Generator (n=3).
	Example: SOURce3:LIST:COUNt 0 - Arbitrary Waveform Generator will be programmed to generate a continuous arbitrary waveform.

SOURce3:LIST :GENeration	the instrument. C SEQuence (DSEC	used to select how the defined lists are applied to Dnly one option is allowed which is the Default Quence) which causes the instrument to cycle of the complete list in order.
	Syntax: SOURce3	LIST:GENeration DSEQuence
	Parameter:	DSEQuence - Default SEQuence
	Default: DSEQ	
	This command is u	sed with the Arbitrary Waveform Generator (n=3).
	Example: SOURce	3:LIST:GENeration DSEQuence
SOURce3:LIST:SRATe	This command is waveform is output	used to program the rate at which the arbitrary t.
	Syntax: SOURce3	LIST:SRATe <numeric value=""></numeric>
	Parameter: <nume< td=""><td>ric value> = .15 to 80e6</td></nume<>	ric value> = .15 to 80e6
	This command is u	sed with the Arbitrary Waveform Generator (n=3).
	Default: No reset	value
	Example: SOURce output with a cloc period of 1e-6s .	3:LIST:SRATe 1.0E6 - The arbitrary waveform is k rate of 1.0e6 Hz. That is each point will have a
SOURce3:AM:SOURce	Arbitrary Waveform TRIangular (TRIA	used to select the external AM Modulation for the Generator. It is used with SINusoid (AC SIGNAL), NGULAR WAVE SIGNAL) and RAMP (RAMP command is used in conjunction with the Te command.
	When AM Modulat	ion is used the output signal is:
	Vout = Vprog +2* A 100ns delay from A If AM IN goes Neg	
	Syntax: SOURce3	AM:SOURce EXTernal
	Parameter: EXTerr	nal
	Default: INT	
	This command is u	used with Arbitrary Waveform Generator (n=3).
	•	3:AM:SOURce EXTernal - The arbitrary waveform al amplitude modulation.

SOURce3:AM:STATe	This command on Pin J1-A1.	is used to enable or disable	e the external AM modulation
	Syntax: SOURc	e3:AM:STATe ON*OFF.	
	Parameter:	ON - Enable use of the extern OFF - Disable use of extern	
	Default: OFF		
	This command	is with the Arbitrary Wavefor	m Generator (n=3).
	Example: SOUR	ce3:AM:STATe ON - Enables	s external AM signal on J1-A1.
SOURce3:ROSCillator: SOURce	This command Waveform Gene		e of the clock for the Arbitrary
300000	Syntax: SOURc	e3:ROSCillator:SOURce INT	Fernal*EXTernal
	Parameter:	INTernal - Selects internal of EXTernal - Selects external Clk Input).	clock source clock source on pin J1-2 (Ext
	Default: OFF		
	This command	is with the Arbitrary Wavefor	m Generator (n=3).
	Example: SOUI as EXT CLK on		XTernal - Select clock source
DATA3:STARt:ADDRess			ress for a memory download ds) using the MEM:DATA3
	Syntax: DATA3	:STARt:ADDRess <start add<="" td=""><td>ress></td></start>	ress>
	Parameter: <sta< td=""><td>art address> = 0 to 13107</td><td>1 (0 to #H1FFFF)</td></sta<>	art address> = 0 to 13107	1 (0 to #H1FFFF)
	For an arbitrar always be set to	y waveform, the start addr 20000H - Number of Data \	ess of the waveform should Nords in the waveform.
		256 (100H) point waveform 00 = #H1FF00 (130816).	h, the start address should be
	The SCPI synta	ix is:	
	DATA3:STAR:A	ADDR #H1FF00	
OUTPut <n>:IMPedance</n>	This command connected throu		impedance that the signal is
	Syntax: OUTPu	t <n>:IMPedance <numeric td="" v<=""><td>alue></td></numeric></n>	alue>
	Parameter: <nu< td=""><td>meric value> =</td><td>0 - No series impedance 50 - 50 Ohms 93 - 93 Ohms</td></nu<>	meric value> =	0 - No series impedance 50 - 50 Ohms 93 - 93 Ohms
	Default: 0		
		is used with Pulse Generato Arbitrary Waveform Generato	or 1 (n=1), Pulse Generator 2 or (n=3).
		Put1:IMPedance 50 - Pulse resistor to the output connect	e Generator 1 is connected ctor.

OUTPut <n>:[STATe]</n>	This command open or closed. Syntax: OUTPu			er the output terminals are
	Parameter: <nu< th=""><th>imeric va</th><th>llue> =</th><th>ON - close output relay OFF - open output relay</th></nu<>	imeric va	llue> =	ON - close output relay OFF - open output relay
	Default: OFF			
			vith Pulse Genera y Waveform Ger	tor 1 (n=1), Pulse Generator nerator (n=3).
	Example: OUTI output.	Put1:ST/	ATe ON - Conne	cts pulse generator 1 to the
OUTPut <n>:TTLTrg<y> :SOURce</y></n>	This command plane TTL trigge		to select which	signal drives the VXI back
	Syntax: OUTPu	it <n>:TT</n>	LTrg <y>:SOURce</y>	e INT <z></z>
	Parameter:	<y> = <z> =</z></y>	2 - Pulse generation	J Pulse ator 1 Output if n=1 or 2 Output if n=2
	Default: INT2			
				Generator 1 (n=1), Pulse veform Generator (n=3).

Example: OUTPut1:TTLTrg1:SOURce INT2 - Output Pulse Generator 1 output on VXI Back plane TTLTrg0.

OUTPut <n>:TTLTrg<y> :STATe</y></n>	backplane trigg	er bus. When On is sele	r the module drives the VXI cted, the module drives the module does not drive the
	Syntax: OUTPu	t <n>:TTLTrg<y>:STATe (</y></n>	ON OFF
	Parameter:	ON - module drives VXI OFF - module does not o	
	Default: OFF		
		s used with Pulse Generate Arbitrary Waveform Gen	tor 1 (n=1), Pulse Generator erator (n=3).
		-	0N - Signal specified in drives the VXI backplane
OUTPut3:FILTer[:LPASs] :FREQuency		s used to control the sele aveform Generator.	ction of the output filters on
	Syntax: OUTPu	t3:FILTer[:LPASs]:FREQ	uency <numeric value=""></numeric>
	Parameter: <nu< th=""><th>meric value> =</th><th>22.0e6 2.2e6 2e6</th></nu<>	meric value> =	22.0e6 2.2e6 2e6
	Default: 22.0e6	;	
	This command is	s used with the Arbitrary \	Waveform Generator (n=3).
	Example: OUTI MHz Filter.	Put3:FILTer:LPASs:FREC	Quency 22E6 - Selects 22
OUTPut3:FILTer[:LPASs]	This command i	is used to turn ON or OFF	the filter selected.
:STATe	Syntax: OUTPu	t3:FILTer[:LPASs]:STATe	ON OFF
	Parameter:	ON - Turn filter OFF - Turn filter	
	Default: OFF		
	This command is	s used with the Arbitrary \	Waveform Generator (n=3).
	Example: OUTP	ut3:FILTer:LPASs:STATe	ON - Turn selected filter on.

OUTPut <n>:EXTernal :STATe</n>	This command output to J2-A4	is used to connect or disconnect the PG1 or PG2 CLKOUT.
	Syntax:	OUTPut1:EXTernal:STATe ON*OFF OUTPut2:EXTernal:STATe ON*OFF
	Parameter:	ON - Connects PG1 or PG2 to J2-A4 (CLKOUT) OFF - Disconnects signal from J2-A4 (CLKOUT)
	Default: OFF	
	This command	is used with Pulse Generator 1 or Pulse Generator 2.
	Example:	OUTPut1:EXTernal:STATe ON - Connects PG1 to J2-A4 (CLKOUT). OUTPut2:EXTernal:STATe ON - Connects PG2 to J2-A4 (CLKOUT).
TRIGger <n>[:SEQuence]</n>	This command	is used to select the trigger source.
:SOURce	Syntax: TRIGg	er <n>[:SEQuence]:SOURce EXTernal TTLTrg<y> IMMediate</y></n>
	Parameter:	EXTernal - External Trigger Input TTLTrg <y>-<y> = 1-8, VXI back plane TTLTrg0-7 IMMediate - Software Start</y></y>
	Default: IMM	
		is used with Pulse Generator 1 (n=1), Pulse Generator e Arbitrary Waveform Generator (n=3).
	Example: TRIC source as TTL	Gger1:SEQuence:SOURce TTLTrg1 - Select trigger Trg0.
TRIGger <n>[:SEQuence]</n>	This command	is used to select the slope of the trigger signal.
:SLOPe	Syntax: TRIGg	er <n>[:SEQuence]:SLOPe POSitive NEGative</n>
	Parameter:	POSitive - Positive slope (rising edge) NEGative - Negative slope (falling edge)
	Default: POS	
		is used with Pulse Generator 1 (n=1), Pulse Generator e Arbitrary Waveform Generator (n=3).
	Example: TRIG (rising edge) tri	ger1:SEQuence:SLOPe POSitive - Selects a positive gger slope.

TRIGger <n>[:SEQuence] :DELay</n>	This command source to the sta		e duration from the trigger
	Syntax: TRIGge	r>n>[:SEQuence]:DELay	<numeric value=""></numeric>
	Parameter: <nu< td=""><td>meric value> =</td><td>10e-9 to 1</td></nu<>	meric value> =	10e-9 to 1
	Default: +1.000	00e-08	
		s used with Pulse Generat Arbitrary Waveform Gen	or 1 (n=1), Pulse Generator erator (n=3).
		ger1:SEQuence:DELay 15 til start of pulse generator	0E-9 - Delay of 150NS from r 1.
TRIGger <n>:GATE</n>	This command i	s used to select the gate	source.
:SOURce	Syntax: TRIGge	er <n>:GATE:SOURce TT</n>	LTrg <y></y>
	Parameter: TTL	_Trg <y> - <y> = 1-8, VXI ł</y></y>	backplane TTLTrg Bus 0-7.
	Default: TTLT8		
		s used with Pulse Generat Arbitrary Waveform Gen	or 1 (n=1), Pulse Generator erator (n=3).
	Example: TRIG		Frg1 - Select gate source as
TRIGger <n>:GATE:LEVel</n>	This command i	s used to select the slope	of the gate signal.
	Syntax: TRIGge	er <n:gate:level high*l<="" td=""><td>LOM</td></n:gate:level>	LOM
	Parameter:	HIGH -Gate on when gat LOW - Gate on when ga	
	Default: HIGH		
		s used with Pulse Generat Arbitrary Waveform Gen	or 1 (n=1), Pulse Generator erator (n=3).
		ger1:GATE:LEV HIGH - S GATE signal is HIGH.	elects that the signal will be

TRIGger <n>:GATE:DELay</n>	This command is used to specify the time duration from the gate source to the start of the signal.
	Syntax: TRIGger>n:GATE:DELay <numeric value=""></numeric>
	Parameter: <numeric value="">=10e-9 to 1)</numeric>
	Default: -2.01e+153
	This command is used with Pulse Generator 1 (n=1), Pulse Generator 2 (n=2), and the Arbitrary Waveform Generator (n=3).
	Example: TRIGger1:GATE:DELay 150E-9 - Delay of 150ns from gate signal until start of pulse generator 1.
TRIGger <n>:GATE:STATe</n>	This command is used to enable the gate source.
	Parameter: ON - Enables Gate source. OFF - Disables Gate source.
	This command is used with Pulse Generator 1 ($n=1$), Pulse Generator 2 ($n=2$), and the Arbitrary Waveform Generator ($n=3$).
	Default: OFF
	Example: TRIGger1:GATE:STATe ON - Enables the GATE capability.
INITiate <n>:IMMediate</n>	This command is used to issue a software start to the specified instrument. There is no query for this command.
	Syntax: INITiate <n>:IMMediate</n>
	Parameter: None
	Default: No reset value
	This command is used with Pulse Generator 1 ($n=1$), Pulse Generator 2 ($n=2$), and the Arbitrary Waveform Generator ($n=3$).
	Example: INITiate1:IMMediate - will issue a software start to Pulse Generator 1.
CALibration:ALL	This command is used to run the internal calibration. There is no query for this command.
	Syntax: CALibration:ALL
	Parameter: None
	Default: No reset value
	Example: CALibration:ALL

DIGital3:STIMulus: PATTern[:VALue]	This command is used to program digital patterns to be output by the Arbitrary Waveform Generator. The maximum list length is 4095 values. There is no query for this command.
	Syntax: DIGital:STIMulus:PATTern[:VALue] <numeric value=""> {<numeric value="">}</numeric></numeric>
	Parameter: <numeric value=""> = 0 to 65535 decimals</numeric>
	Default: No reset value
	This command is used with the Arbitrary Waveform Generator (n=3).
	Example:DIGital:STIMulus:PATTern:VALue 0000, 0111, 0222, 0333, 0444 - An digital signal is output with 5 different patterns (0000, 0111, 0222, 0333, 0444).
DIGital3:STIMulus: PATTern:REPeat	This command is used to program the number of times each digital pattern is to be repeated. The maximum list length is 4095 values. There is no query for this command.
	Syntax: DIGital:STIMulus:PATTern:REPeat <numeric value=""> {,<numeric value="">}</numeric></numeric>
	Parameter: <numeric value=""> = 1 to 32767</numeric>
	Default: No reset value
	This command is used with the Arbitrary Waveform Generator (n=3).
	Example:DIGital:STIMulus:PATTern:REPeat 1, 2, 3, 4, 5 - This will cause the digital pattern output to be repeated the number of cycles specified.
DIGital3:TIMing:CLOCk	This command is used to program the rate at which the digital patterns are output.
	Syntax: DIGital:TIMing:CLOCk <numeric value=""></numeric>
	Parameter: <numeric value=""> = 0.15 to 80e6</numeric>
	Default: -6.87983e-43
	This command is used with the Arbitrary Waveform Generator (n=3).
	Example:DIGital:TIMing:CLOCk 10000 - This causes the digital pattern to be output at a pattern rate of 10000 vectors or patterns per second.

DIGital3:COUNt	This command is used to pattern is repeated.	to program the	e number of times a digital
	Syntax: DIGital:COUNt <r< th=""><th>numeric value></th><th></th></r<>	numeric value>	
	Parameter: <numeric th="" valu<=""><th>16> =</th><th>0 - Continuous 1 to 65535 burst</th></numeric>	16> =	0 - Continuous 1 to 65535 burst
	Default: 1		
	This command is used wit	th the Arbitrary	Waveform Generator (n=3).
	Example:DIGital:COUNt repeated 10 times.	10 - This caus	es the digital pattern to be
MEMory3:DATA			rbitrary waveform starting at STARt:ADDRess command.
	Syntax: MEMory3:DATA <	<start address=""></start>	, <depth>, <value> {,</value></depth>
	Parameter: <start address<br=""><depth> = <value> =</value></depth></start>	1 to 20	
	The start address parame offset (higher address val DATA3:STARt:ADDRess command can be used m the entire 128k of wavefor 3171's Arbitrary Wavefor	ue) from the or command or a ore than once, rm memory). Th	t the same address (this giving the user access to
	Address		Data
	#H1FFFF (131071)	See memory	data description

The depth parameter specifies the number of waveform data words to follow.

The value parameter defines voltage and control bits as shown:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

BIT 15 -To VXI Trigger BIT 14 -Not used BIT 13 -To Cursor out (J1-5) BIT 12 -To Sync out (J1-4) BITS 11-0- Arbitrary Waveform DAC

To calculate Bits 11-0, use the following equation:

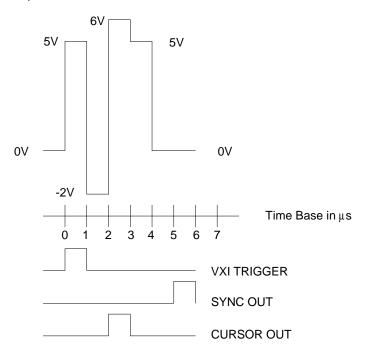
DAC Bits 11-0 = 2048 -INT((Expected Voltage/DAC Bit Weight) + 0.5)

where INT is a function returning the integer portion of the number CF is the conversion factor returned by

READ3:GAIN:HSDAC?

NOTE €

Data must be loaded into memory with the last data word to be output in the highest memory location (#H1FFFF) and the first data word in memory location #H20000 (131072) minus the total number of data words to be output.


Example: If a burst of 4000 data words was to executed data should be loaded into memory as follows:

Address	Data
#H1FFFF (131071)	Data for last memory location (4000)

SCPI Syntax required to load the waveform:

```
SOUR3:FUNC:SHAP USER
SOUR3:VOLT:MODE LIST
DATA3:STAR:ADDR #H1FFFA
MEM3:DATA #H1FFFA, 6, #H842E, #H0986, #H236A,
#H042E, #H0800, #H1800
SOUR3:LIST:COUN 0
SOUR3:LIST:SRATE 1.0E6
TRIG3:SEQ:SOUR IMM
OUTP3:IMP 50
OUTP3:STAT ON
INIT3:IMM
```

Sample Waveform:

DATA3:STARt:ADDRess This command is used to set the start address for a memory download (or group of multiple memory downloads) using the MEM:DATA3 command.

Syntax: DATA3:STARt:ADDRess <start address>

Parameter: <start address> = 0 to 131071 (0 to #H1FFFF)

For an arbitrary waveform, the start address of the waveform should always be set to 20000H -Number of Data Words in the waveform.

Example: For a 256 (100H) word bit pattern, the start address should be #H20000 -#H100 = #H1FF00 (130816).

The SCPI syntax is:

DATA3:STAR:ADDR #H1FF00

Revised 4/20/99

MEMory3:DATA

This command is used to download an arbitrary waveform starting at the address specified using the DATA3:STARt:ADDRess command.

Syntax: MEMory3:DATA <start address>, <depth>, <value> {, <value>}

Parameter: <start address=""> =</start>	0 to 131071	(0 to #H1FFFF)
<depth> =</depth>	1 to 2048	
<value> =</value>	0 to 65535	

The start address parameter allows the user to download data at an offset (higher address value) from the one specified in the DATA3:STARt:ADDRess command or at the same address (this command can be used more than once, giving the user access to the entire 128k of waveform memory). The address map for the 3171's Digital Pattern Memory is:

Address	Data
#H1FFFF (131071)	See memory data description
#H0000 (0)	

The depth parameter specifies the number of waveform data words to follow.

The value parameter defines digital word bits as shown:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

- BIT 15 To VXI Trigger
- BIT 14 Not used

BIT 13 - To Cursor out (J1-5)

- BIT 12 To Sync out (J1-4)
- BIT 11 Not used
- BIT 10 Not used

BITS 9-0 - Lower 10 bits of the digital word

NOTE€

Data must be loaded into memory with the last data word to be output in the highest memory location (#H1FFFF) and the first data word in memory location #H20000 (131072) minus the total number of data words to be output.

Example: If a burst of 8092 digital words was to be executed, data should be loaded into memory as follows:

Address	Data
#H1FFFF (131071)	Data for last digital word (8092)
	_
•	•

The SCPI commands to load the digital data are:

DATA3:STAR:	ADDR #H1E00	0		
MEM3:DATA	#H1E000,	2048,	<data0001>,</data0001>	•••
<data2048></data2048>				
MEM3:DATA	#H1E800,	2048,	<data2049>,</data2049>	•••
<data4096></data4096>				
MEM3:DATA	#H1F000,	2048,	<data4097>,</data4097>	•••
<data6144></data6144>				
MEM3:DATA	#H1F800,	2048,	<data6145>,</data6145>	•••
<data8192></data8192>				

Revised 4/20/00

READ3:GAIN:HSDAC?

This command queries the 3171 for an internal conversion factor that converts the DAC bit setting to an actual voltage at the 3171's present gain setting.

Syntax: READ3:GAIN:HSDAC?

Value Returned: Floating point number representing Volts to DAC bits conversion factor (DAC Bit Weight).

To convert an expected voltage into DAC bits, use the following equation:

DAC Bits 11-0 = 2048 - INT((Expected Voltage/DAC Bit Weight) + 0.5)

where INT is a function returning the integer portion of the number CF is the conversion factor returned by READ3:GAIN:HSDAC?

Example: Calculate the proper DAC output word for the voltage and control bit settings given in the table below when the READ3:GAIN:HSDAC? command returns a value of 0.00511:

	Output	Memory	Control Bits	Data Bits 11-0	
Point	Voltage	Address	15-12	2048 - INT((Voltage/0.00511)+0.5)	Output Word
1	5.0V	#H1FFFA	1000 (VXI Trigger)	1070 (#H42E)	#H842E
2	-2.0V	#H1FFFB	0000	2438 (#H986)	#H0986
3	6.0V	#H1FFFC	0010 (Cursor Out)	874 (#H36A)	#H236A
4	5.0V	#H1FFFD	0000	1070 (#H42E)	#H042E
5	0.0V	#H1FFFE	0000	2048 (#H800)	#H0800
6	0.0V	#H1FFFF	0001 (Sync Out)	2048 (#H800)	#H1800

SYSTem:ERRor?	This command	reads the next entry from the error/event queue.
	Syntax: SYSTe	m:ERRor?
	Default: 0, "No	error"
	Result: ASCII o " <error d<="" event="" th=""><th>character string with format: <error event="" number="">, escription>"</error></th></error>	character string with format: <error event="" number="">, escription>"</error>
	Example: SYST	Tem:ERRor?
	Return Result E	Example: 0, "No error" -100, "Command error" -101, "Invalid character" -102, "Syntax error" -350, "Queue overflow" etc.
	A complete list the Error Messa	ing of error codes is given later in this chapter in ages section.
SYSTem:VERSion?	This command	reads the system version number.
	Syntax: SYSTe	m:VERSion?
	Default: 1992.0)
	Result : ASCII o	character string with the version number.
	Example: SYST	Tem:VERSion?
SYSTem:PRESet <n></n>	This command instrument.	is used to reset the specified instrument of the
	Syntax: SYSTe	m:PRESet <n></n>
	Parameter:	<n> = 1 - Pulse Generator 1 <n> = 2 - Pulse Generator 2 <n> = 3 - Arbitrary Waveform Generator</n></n></n>
	Default: No res	set value
	Example: SYST	Fem:PRESet1 - reset Pulse Generator 1

Revised 4/24/00

STATus:OPERation [:EVENt]?	This command is used to return the contents of the operation event register.
	Syntax: STATus:OPERation:[EVENt]?
	Default: 0
	Example: STATUS:OPERation:EVENt?
	Return value: 0 = no error, non-zero = error
STATus:OPERation :CONDition?	This command is used to return the contents of the operation condition register.
	Syntax: STATus:OPERation:CONDition?
	Default: Not implemented
	Example: STATUS:OPERation:CONDition?
	Return value: 0 = no error, non-zero = error
STATus:OPERation :ENABle <nrf></nrf>	This command is used to set the enable mask of the operation enable register.
	Syntax: STATus:OPERation:ENABle <numeric value=""></numeric>
	Parameter: <numeric value=""> = 0 to 32767</numeric>
	Default: 0
	Example: STATUS:OPERation:ENABle 255 - Enables bits 8-15.
STATus:OPERation :ENABle?	This command is used to return the contents of the operation enable register.
	Syntax: STATus:OPERation:ENABle?
	Default: 0
	Example: STATUS:OPERation:ENABle? - will return the contents of the operation enable register.

STATus:QUEStionable [:EVENt]?	This command is used to return the contents of the questionable event register.
	Syntax: STATus:QUEStionable[:EVENt]?
	Default: 0
	Example: STATUS:QUEStionable:EVENt? - will return the contents of the questionable event register.
STATus:QUEStionable :CONDition?	This command is used to return the contents of the questionable condition register.
	Syntax: STATus:QUEStionable:CONDition?
	Default: Not implemented
	Example: STATUS:QUEStionable:CONDition? - will return the contents of the questionable event register.
STATus:QUEStionable :ENABle <nrf></nrf>	This command is used to set the enable mask of the questionable enable register.
	Syntax: STATus:QUEStionable:ENABle <numeric value=""></numeric>
	Default: 0
	<numeric value=""> - 0 to 32767</numeric>
	Example: STATUS:QUEStionable:ENABle 255 - will set the enable mask of the questionable enable register to 255.
STATus:QUEStionable :ENABle?	This command is used to return the contents of the questionable enable register.
	Syntax: STATus:QUEStionable:ENABle?
	Default: 0
	Example: STATUS:QUEStionable:ENABle? - will return the contents of the questionable event register.
STATus:PRESet	This command configures the SCPI and device-dependent status data structures to 0.
	Syntax: STATus:PRESet
	Default: No reset value
Revised 4/24/00	Example: STATUS:PRESet - configures the SCPI and device- dependent status data structures to 0.

SCPI Commands For Signal Types

This section lists the SCPI commands required to generate a DC Signal, AC Signal, Square Wave Signal, Triangular Wave Signal, Ramp Signal, Pulsed DC Signal, Arbitrary Waveform or a Digital Pattern.

DC Signal SCPI Commands The following table lists the SCPI Commands and the suggested order to Generate a DC Signal for the Pulse Generator 1, Pulse Generator 2 or the Arbitrary Waveform Generator.

SOURce <n>:FUNCtion:SHAPe DC</n>	Required
SOURce <n>:VOLTage:MODE FIXed</n>	Optional
SOURce <n>:VOLTage:LEVel:IMMediate:AMPLitude <numeric value=""></numeric></n>	Required
OUTPut <n>:IMPedance 0 50 93</n>	Required
OUTPut <n>:STATe ON*OFF</n>	Required

Instrument	<n></n>
Pulse Generator 1	1
Pulse Generator 2	2
Arbitrary Waveform Generator	3

A DC Signal is generated when the SCPI command SOURce<n>:VOLTage:LEVel:IMMediate:AMPLitude <numeric value> is received.

The instrument is connected to the output and the output impedance is programmed when the SCPI command OUTPut<n>:STATe ON is received.

Revised 4/24/00

AC Signal SCPI Commands The following table lists the SCPI Commands and the suggested order to generate an AC Signal on the Arbitrary Waveform Generator.

SOURce3:FUNCtion:SHAPe SINusoid	Required
SOURce3:FUNCtion:POLarity NORMal INVERTED	Optional
SOURce3:FUNCtion:COUNt 0 to 65535	Optional
SOURce3:VOLTage:MODE FIXed	Optional
SOURce3:VOLTage:LEVel:TRIGgered:AMPLitude <numeric value=""></numeric>	Required
SOURce3:VOLTage:LEVel:TRIGgered:OFFSet <numeric value=""></numeric>	Optional
SOURce3:FREQuency:MODE:CW	Optional
SOURce3:FREQuency:CW <numeric value=""></numeric>	Required
TRIGger3:SEQuence:SLOPe POSitive NEGative	Optional
TRIGger3:SEQuence:DELay <numeric value=""></numeric>	Optional
TRIGger3:SEQuence:SOURce EXTernal TTLTrg <y> IMMediate</y>	Optional
TRIGger3:GATE:LEVel HIGH*LOW	Optional
TRIGger3:GATE:DELay <numeric value=""></numeric>	Optional
TRIGger3:GATE:SOURce TTLTrg <y></y>	Optional
TRIGger3:GATE:STATe ON*OFF	Optional
OUTPut3:IMPedance 0 50 93	Required
OUTPut3:STATe ON OFF	Required
INITiate3:IMMediate	Optional*
* Required if Trigger SOURce IMMediate	-

The AC Signal is generated when the SCPI command SOURce3:FREQuency:CW <numeric value> is received.

The Trigger Source, slope and delay are programmed when the SCPI command TRIGger3:SEQuence:SOURce is received.

The Gate Source, level and delay are programmed when the SCPI command TRIGger3:GATE:STATe ON*OFF is received.

The instrument is connected to the output and the output impedance is programmed when the SCPI command OUTPut<n>:STATe ON is received.

The INITiate3:IMMediate command issues a software start and is required if the trigger source is immediate.

To generate an output signal, either a trigger source or a gate source SCPI command must be issued.

SQUARE WAVE Signal SCPI Commands

The following table lists the SCPI Commands and the suggested order to generate a Square wave Signal on the Arbitrary Waveform Generator.

SOURce3:FUNCtion:SHAPe SQUare	Required
SOURce3:FUNCtion:POLarity NORMal INVERTED	Optional
SOURce3:FUNCtion:COUNt 0 to 65535	Optional
SOURce3:VOLTage:MODE FIXed	Optional
SOURce3:VOLTage:LEVel:TRIGgered:AMPLitude <numeric value=""></numeric>	Required
SOURce3:VOLTage:LEVel:TRIGgered:OFFSet <numeric value=""></numeric>	Optional
SOURce3:FREQuency:MODE:CW	Optional
SOURce3:FREQuency:CW <numeric value=""></numeric>	Required
TRIGger3:SEQuence:SLOPe POSitive NEGative	Optional
TRIGger3:SEQuence:DELay <numeric value=""></numeric>	Optional
TRIGger3:SEQuence:SOURce EXTernal TTLTrg <y> IMMediate</y>	Required
TRIGger3:GATE:LEVel HIGH*LOW	Optional
TRIGger3:GATE:DELay <numeric value=""></numeric>	Optional
TRIGger3:GATE:SOURce TTLTrg <y></y>	Optional
TRIGger3:GATE:STATe ON*OFF	Optional
OUTPut3:IMPedance 0 50 93	Required
OUTPut3:STATe ON OFF	Required
INITiate3:IMMediate	Optional*
* Required if Trigger SOURce IMMediate	

The Square Wave Signal is generated when the SCPI command SOURce3:FREQuency:CW <numeric value> is received.

The Trigger Source, slope and delay are programmed when the SCPI command TRIGger3:SEQuence:SOURce is received.

The Gate Source, level and delay are programmed when the SCPI command TRIGger3:GATE:STATe ON*OFF is received.

The instrument is connected to the output and the output impedance is programmed when the SCPI command OUTPut<n>:STATE ON is received.

The INITiate3:IMMediate command issues a software start and is required if the trigger source is immediate.

To generate an output signal, either a trigger source or a gate source SCPI command must be issued.

TRIANGULAR WAVE Signal SCPI Commands

The following table lists the SCPI Commands and the suggested order to generate a Triangular Wave Signal on the Arbitrary Waveform Generator.

SOURce3:FUNCtion:SHAPe TRIangular	Required
SOURce3:FUNCtion:POLarity NORMal INVERTED	Optional
SOURce3:FUNCtion:COUNt 0 to 65535	Optional
SOURce3:VOLTage:MODE FIXed	Optional
SOURce3:VOLTage:LEVel:TRIGgered:AMPLitude <numeric value=""></numeric>	Required
SOURce3:VOLTage:LEVel:TRIGgered:OFFSet <numeric value=""></numeric>	Optional
SOURce3:FREQuency:MODE:CW	Optional
SOURce3:FREQuency:CW <numeric value=""></numeric>	Required
TRIGger3:SEQuence:SLOPe POSitive NEGative	Optional
TRIGger3:SEQuence:DELay <numeric value=""></numeric>	Optional
TRIGger3:SEQuence:SOURce EXTernal TTLTrg <y> IMMediate</y>	Required
TRIGger3:GATE:LEVel HIGH*LOW	Optional
TRIGger3:GATE:DELay <numeric value=""></numeric>	Optional
TRIGger3:GATE:SOURce TTLTrg <y></y>	Optional
TRIGger3:GATE:STATe ON*OFF	Optional
OUTPut3:IMPedance 0 50 93	Required
OUTPut3:STATe ON OFF	Required
INITiate3:IMMediate * Required if Trigger SOURce IMMediate	Optional*

The Triangular Wave Signal is generated when the SCPI command SOURce3:FREQuency:CW <numeric value> is received.

The Trigger Source, slope and delay are programmed when the SCPI command TRIGger3:SEQuence:SOURce is received.

The Gate Source, level and delay are programmed when the SCPI command TRIGger3:GATE:STATe ON*OFF is received.

The instrument is connected to the output and the output impedance is programmed when the SCPI command OUTPut<n>:STATe ON is received.

The INITiate3:IMMediate command issues a software start and is required if the trigger source is immediate.

To generate an output signal, either a trigger source or a gate source SCPI command must be issued.

RAMP Signal SCPI Commands The following table lists the SCPI Commands and the suggested order to generate a Ramp Signal on the Arbitrary Waveform Generator

SOURce3:FUNCtion:SHAPe RAMP	Required
SOURce3:FUNCtion:POLarity NORMal INVERTED	Optional
SOURce3:FUNCtion:COUNt 0 to 65535	Optional
SOURce3:VOLTage:MODE FIXed	Optional
SOURce3:VOLTage:LEVel:TRIGgered:AMPLitude <numeric value=""></numeric>	Required
SOURce3:VOLTage:LEVel:TRIGgered:OFFSet <numeric value=""></numeric>	Optional
SOURce3:FREQuency:MODE:CW	Optional
SOURce3:FREQuency:CW <numeric value=""></numeric>	Required
TRIGger3:SEQuence:SLOPe POSitive NEGative	Optional
TRIGger3:SEQuence:DELay <numeric value=""></numeric>	Optional
TRIGger3:SEQuence:SOURce EXTernal TTLTrg <y> IMMediate</y>	Required
TRIGger3:GATE:LEVel HIGH*LOW	Optional
TRIGger3:GATE:DELay <numeric value=""></numeric>	Optional
TRIGger3:GATE:SOURce TTLTrg <y></y>	Optional
TRIGger3:GATE:STATe ON*OFF	Optional
OUTPut3:IMPedance 0 50 93	Required
OUTPut3:STATe ON OFF	Required
INITiate3:IMMediate * Required if Trigger SOURce IMMediate	Optional*

The RAMP Signal is generated when the SCPI command SOURce3:FREQuency:CW <numeric value> is received.

The Trigger Source, slope and delay are programmed when the SCPI command TRIGger3:SEQuence:SOURce is received.

The Gate Source, level and delay are programmed when the SCPI command TRIGger3:GATE:STATe ON*OFF is received.

The instrument is connected to the output and the output impedance will be programmed when the SCPI command OUTPut<n>:STATe ON is received.

The INITiate3:IMMediate command issues a software start and is required if the trigger source is immediate.

To generate an output signal, either a trigger source or a gate source SCPI command must be issued.

PULSED DC SCPI

The following table lists the SCPI Commands and the suggested order to generate a Pulsed DC Signal.

Commands

	Danut
SOURce <n>:FUNCtion:SHAPe PULSe</n>	Required
SOURce <n>:VOLTage:MODE FIXed</n>	Optional
SOURce <n>:VOLTage:LEVel:TRIGgered:AMPLitude <numeric value=""></numeric></n>	Required
SOURce <n>:VOLTage:LEVel:TRIGgered:OFFSet <numeric value=""></numeric></n>	Optional
SOURce <n>:PULSe:COUNt 0 to 65535</n>	Required
SOURce <n>:PULSe:POLarity NORMal INVERTED</n>	Optional
SOURce <n>:PULSe:TRANsition:STATe ON OFF</n>	Optional
SOURce <n>:PULSe:TRANsition:LEADing <numeric value=""></numeric></n>	Optional
SOURce <n>:PULSe:TRANsition:TRAiling <numeric value=""></numeric></n>	Optional
SOURce <n>:PULSe:WIDTh <numeric value=""></numeric></n>	Required
SOURce <n>:PULSe:PERiod <numeric value=""></numeric></n>	Required
TRIGger <n>:SEQuence:SLOPe POSitive NEGative</n>	Optional
TRIGger <n>:SEQuence:DELay <numeric value=""></numeric></n>	Optional
TRIGger <n>:SEQuence:SOURce EXTernal TTLTrg<y> IMMediate</y></n>	Required
TRIGger3:GATE:LEVel HIGH*LOW	Optional
TRIGger3:GATE:DELay <numeric value=""></numeric>	Optional
TRIGger3:GATE:SOURce TTLTrg <y></y>	Optional
TRIGger3:GATE:STATe ON*OFF	Optional
OUTPut <n>:IMPedance 0 50 93</n>	Required
OUTPut <n>:STATe ON OFF</n>	Required
INITiate <n>:IMMediate * Required if Trigger SOURce IMMediate</n>	Optional*

Instrument	<n></n>
Pulse Generator 1	1
Pulse Generator 2	2
Arbitrary Waveform Generator	3

If the instrument is the Arbitrary Waveform Generator, the Rise-Time and Fall-Time are not programmable. The only option allowed is SOURce3:TRANsition:STATe OFF.

The Pulsed DC Signal is generated when the SCPI command SOURce<n>:PULSe:PERiod <numeric value> is received.

The Trigger Source, slope and delay are programmed when the SCPI command TRIGger<n>:SEQuence:SOURce is received.

The Gate Source, level and delay are programmed when the SCPI command TRIGger3:GATE:STATe ON*OFF is received.

The instrument is connected to the output and the output impedance is programmed when the SCPI command OUTPut<n>:STATe ON is received.

The INITiate<n>:IMMediate command issues a software start and is required if the trigger source is immediate.

To generate an output signal, either a trigger source or a gate source SCPI command must be issued.

Revised 4/24/00

ARBITRARY WAVEFORM SCPI Commands (4K Buffer Size Limit)

The following table lists the SCPI Commands and the suggested order to generate an Arbitary Waveform.

SOURce3:FUNCtion:SHAPe USER	Required
SOURce3:VOLTage:MODE LIST	Optional
SOURce3:LIST:VOLT <numeric value=""> {,<numeric value="">}</numeric></numeric>	Required
SOURce3:LIST:REPeat <numeric value=""> {,<numeric value="">}</numeric></numeric>	Optional
SOURce3:LIST:GENeration DSEQuence	Optional
SOURce3:LIST:COUNt 0 to 65535	Required
SOURce3:LIST:SRATe <numeric value=""></numeric>	Required
TRIGger3:SEQuence:SLOPe POSitive NEGative	Optional
TRIGger3:SEQuence:DELay <numeric value=""></numeric>	Optional
TRIGger3:SEQuence:SOURce EXTernal TTLTrg <y> IMMediate</y>	Required
TRIGger3:GATE:LEVel HIGH LOW	Optional
TRIGger3:GATE:DELay <numeric value=""></numeric>	Optional
TRIGger3:GATE:SOURce TTLTrg <y></y>	Optional
TRIGger3:GATE:STATe ON OFF	Optional
	Optional
OUTPut3:IMPedance 0 50 93	Required
OUTPut3:STATe ON OFF	Required
INITiate3:IMMediate * Required if Trigger SOURce IMMediate	Optional*

The Arbitrary Waveform is generated when the SCPI command SOURce:LIST:SRATe <numeric value > is received.

The Trigger Source, slope and delay are programmed when the SCPI command TRIGger3:SEQuence:SOURce is received.

The Gate Source, level and delay are programmed when the SCPI command TRIGger3:GATE;STATE ON | OFF is received.

The instrument is connected to the output and the output impedance is programmed when the SCPI command OUTPut<n>:STATe Onis received.

The INITiate3:IMMediate command issues a software start and is required if the trigger source is immediate.

To generate an output signal, either trigger source or a gate source SCPI command must be issued.

Revised 4/24/00

ARBITRARY WAVEFORM SCPI Commands (Up to 128K data words)

SCPI Commands and suggested order to generate an Arbitrary Waveform.

SOURce3:FUNCtion:SHAPe USER	Required
SOURce3:VOLTage:MODE LIST	Optional
DATA3:STARt:ADDRess <start address=""></start>	Required
MEMory3:DATA <start address="">, <depth>, <numeric value=""> {,<numeric value="">}</numeric></numeric></depth></start>	Required
SOURce3:LIST:COUNt 0 to 65535	Required
SOURce3:LIST:SRATe <numeric value=""></numeric>	Required
TRIGger3:SEQuence:SLOPe POSitive NEGative	Optional
TRIGger3:SEQuence:DELay <numeric value=""></numeric>	Optional
TRIGger3:SEQuence:SOURce EXTernal TTLTrg <y> IMMediate</y>	Required
OUTPut3:IMPedance 0 50 93	Required
OUTPut3:STATe ON OFF	Required
INITiate3:IMMediate	Optional*
* Required if Trigger Source IMMediate	optional
READ3:GAIN:HSDAC?	Required

The SCPI READ3:GAIN:HSDAC? command reads the DAC Bit weight which is used to calculate the DAC setting.

The SCPI DATA3:START:ADDRESS <start address> defines the starting RAM address.

The Arbitrary Waveform is generated when the SCPI command SOURCE3:LIST:SRATE <numeric value> is received.

The Trigger Source, slope and delay are programmed when the SCPI command TRIGGER3:SEQUENCE:SOURCE is received.

The instrument is connected/disconnected to the output and the output impedance is programmed when the SCPI command OUTPUT<n>:STATE ON | OFF is received.

The INITIATE3:IMMEDIATE command issues a software start and is required if the trigger source is immediate.

To generate an output signal, either a trigger source or a gate source SCPI command must be issued.

Revised 4/20/00

DIGITAL PATTERN SCPI Commands (4K Buffer Size Limit)

The following table lists the SCPI Commands and the suggested order to generate a Digital Pattern output.

SOURce3:FUNCtion:SHAPe DIGital	Required
DIGital:STIMulus:PATTern:VALue <numeric value=""> {,<numeric value="">}</numeric></numeric>	Required
DIGital:STIMulus:PATTern:REPeat <numeric value=""> {, <numeric value="">}</numeric></numeric>	Optional
DIGital:COUNt 0 to 65535	Required
DIGital:TIMing:CLOCk <numeric value=""></numeric>	Required
TRIGger3:SEQuence:SLOPe POSitive NEGative	Optional
TRIGger3:SEQuence:DELay <numeric value=""></numeric>	Optional
TRIGger3:SEQuence:SOURce EXTernal TTLTrg <y> IMMediate</y>	Required
TRIGger3:GATE:LEVel HIGH LOW	Optional
TRIGger3:GATE:DELay <numeric value=""></numeric>	Optional
TRIGger3:GATE:SOURce TTLTrg <y></y>	Optional
TRIGger3:GATE:STATe ON OFF	Optional
INITiate3:IMMediate	Optional*
* Required if Trigger Source IMMediate	

The Digital pattern is generated when the trigger source is received. The Digital pattern will be programmed when the DIGital:TIMing:CLOCk command is received.

The Trigger Source, slope and delay are programmed when the SCPI command TRIGger3:SEQuence:SOURce is received.

The Gate Source, level and delay are programmed when the SCPI command TRIGger3:GATE:STATe ON|OFF is received.

The instrument is connected to the output and the output impedance is programmed when the SCPI command OUTPut<n>:STATe ON is received.

The INITiate3:IMMediate command issues a software start and is required if the trigger source is immediate.

To generate an output signal, either a trigger source or a gate source SCPI command must be issued.

Revised 4/24/00

Using The Instrument 3-43

DIGITAL PATTERN SCPI Commands (Up to 128K data words)

SCPI Commands and suggested order to generate a Digital Pattern output.

SOURce3:FUNCtion:SHAPe DIGital	Required
DATA3:STARt:ADDRess <start address=""></start>	Required
MEMory3:DATA <start address="">, <depth>, <numeric value=""> {,<numeric value="">}</numeric></numeric></depth></start>	Required
DIGital:COUNt 0 to 65535	Required
DIGital:TIMing:CLOCk <numeric value=""></numeric>	Required
TRIGger3:SEQuence:SLOPe POSitive NEGative	Optional
TRIGger3:SEQuence:DELay <numeric value=""></numeric>	Optional
TRIGger3:SEQuence:SOURce EXTernal TTLTrg <y> IMMediate</y>	Required
INITiate3:IMMediate	Optional*
* Required if Trigger Source IMMediate	

The Digital pattern is generated when the trigger source is received. The Digital pattern will be programmed when the DIGital:TIMing:CLOCk command is received.

The Trigger Source, slope and delay will be programmed when the SCPI command TRIGger3:SEQuence:SOURce is received.

The Gate Source, level and delay are programmed when the SCPI command TRIGger3:GATE:STATe ON|OFF is received

The INITiate3:IMMediate command issues a software start and is required if the trigger source is immediate..

To generate an output signal, either a trigger source or a gate source SCPI command must be issued.

Revised 4/20/00

IEEE 488.2 Standard Common Commands	The IEEE 488.2 standard defines the common commands and queries that perform functions like reset, self test and status byte query. Common commands are four or five characters in length, always begin with the asterisk character (*) and may include one or more parameters.
*CLS - Clear Status Command	The *CLS command clears the Status Data Structures, empties all queues except the output queue.
	Syntax: *CLS
*ESE - Standard Event Status Enable Command	The *ESE command sets the bits in the Event Status Enable Register.
	Syntax: *ESE <decimal data="" number="" program=""></decimal>
	<decimal data="" number="" program=""> = 0 to 255 and represents the bit value of the Standard Event Status Enable Register.</decimal>
*ESE? - Standard Event Status Enable Query	The *ESE? command queries the current contents of the Standard Event Status Enable Register.
	Syntax: *ESE?
	Value returned: decimal number from 0 to 255.
*ESR? - Standard Event Status Register Query	The *ESR? command queries and clears the current contents in the Standard Event Status Register.
	Syntax: *ESR?
	Value returned: decimal number from 0 to 255.
*IDN? - Identification Query	The *IDN? command queries and returns the identification string of the instrument.
	Syntax: *IDN?
	Value returned: "Racal Instruments Model 3171"
*RST - Reset Command	The *RST command resets the instrument hardware and firmware.
	Syntax: *RST
*SRE - Service Request Enable Command	The *SRE command sets the bits in the Service Request Enable Register.
	Syntax: *SRE <decimal data="" number="" program=""></decimal>
	<decimal data="" number="" program=""> = 0 to 255 and represents the bit value of the Service Request Enable Register.</decimal>

Revised 4/24/00

*SRE? - Service Request Enable Query	The *SRE? command queries and clears the current contents in the Standard Event Status Register.	
	Syntax: *SRE?	
	Value returned: decimal number from 0 to 255.	
*STB? - Read Status Byte Query	The *STB? command queries the current contents of the Status Byte Register and Master Summary Status bit.	
	Syntax: *STB?	
	Value returned: decimal number from 0 to 255.	
*TST? - Self-Test Query	The *TST? command causes an internal self-test and places a response in the Output Queue indicating whether or not the device completed the self-test without any detected errors. Upon completion of self-test the instrument is returned to its reset state.	
	Syntax: *TST?	
	Value returned: 0 if self-test passed, non-zero if self-test failed.	
The SCPI Status Registers	The Model 3171 uses the Status Byte register group and the Standard Event register group to record various instrument conditions. Figure 3-1 shows the SCPI status system.	
	An Event Register is a read-only register that reports defined conditions within the generator. Bits in an event register are latched. When an event bit is set, subsequent state changes are ignored. Bits in an event register are automatically cleared by a query of that register or by sending the *CLS command. The *RST command or device clear does not clear bits in an event register. Querying an event register returns a decimal value which corresponds to the binary-weighted sum of all bits set in the register.	
	An Event Register defines which bits in the corresponding event register are logically ORed together to form a single summary bit. The user can read from and write to an Enable Register. Querying an Enable Register will not clear it. The *CLS command does not clear Enable Registers but it does clear bits in the event registers. To enable bits in an enable register, write a decimal value that corresponds to the binary-weighted sum of the bits required to enable in the register.	

Revised 4/24/00

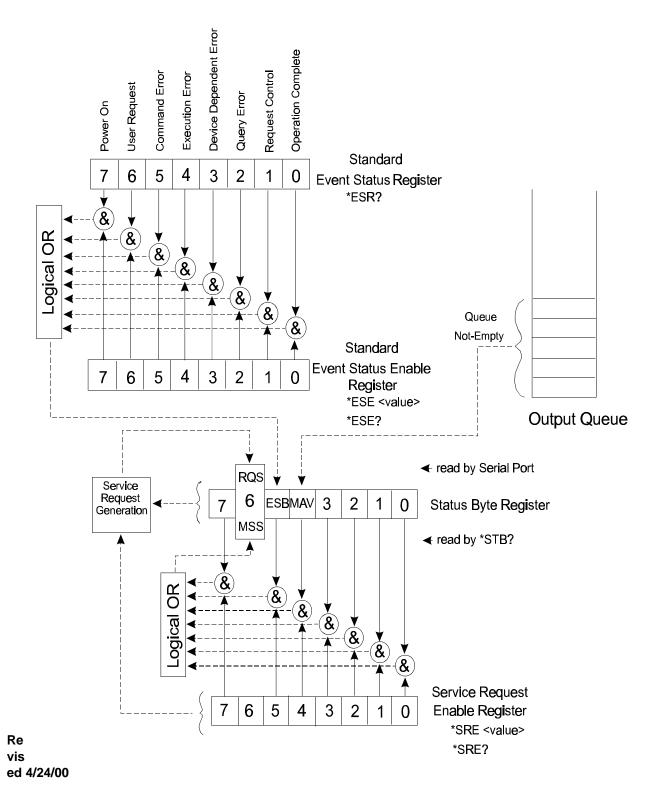


Figure 3-1 SCPI Status Register

The Status Byte Register (STB)	The Status Byte summary register contains conditions from the other registers. Query data waiting in the generator's output buffer is immediately reported through the Message Available bit (bit 4). Bits in the summary register are not latched. Clearing an event register clears the corresponding bits in the Status Byte summary register. Description of the various bits within the Status Byte summary register is given in the following:
	 Bit 0 - Decimal value 1. Not used, always set to 0. Bit 1 - Decimal value 2. Not used, always set to 0. Bit 2 - Decimal value 4. Not used, always set to 0. Bit 3 - Decimal value 8. Not used, always set to 0.
	Bit 4 - Decimal value 16. Message Available Queue Summary Message (MAV). The state of this bit indicates whether or not the output queue is empty. The MAV summary message is true when the output queue is not empty. This message is used to synchronize information exchange with the controller. The controller can, for example, send a query command to the device and then wait for MAV to become true. If an application program begins a read operation of the output queue without first checking for MAV, all system bus activity is held up until the device responds
	Bit 5 - Decimal value 32. Standard Event Status Bit (ESB) Summary Message. This bit indicates whether or not one or more of the enabled ESB events have occurred since the last reading or clearing of the Standard Event Status Register.
	Bit 6 - Decimal value 64. Master Summary Status (MSS)/Request Service (RQS) Bit. This bit indicates if the device has at least one condition to request service. The MSS bit is not part of the IEEE- STD-488.2 status byte and will not be sent in response to a serial poll. However, the RQS bit, if set, will be sent in response to a serial poll.
	Bit 7 - Decimal value 128. Not used, always set to 0.
Reading the Status Byte Register	The Status Byte summary register can be read with the *STB? common query. The *STB? common query causes the generator to send the contents of the Status Byte register and the MSS (Master Summary Status) summary message as a single <nr1 message="" numeric="" response=""> element. The response represents the sum of the binary-weighted values of the Status Byte Register. The *STB? common query does not alter the status byte.</nr1>
Clearing the Status Byte Register	The entire Status Byte register can be cleared by removing the reasons for service from Auxiliary Status registers. Sending the *CLS command to the device after a SCPI command terminator and before a Query clears the Standard Event Status Register and clears the output queue of any unread messages. With the output queue empty, the MAV summary message is set to FALSE. Methods of clearing other auxiliary status registers are discussed in the following
Revised 4/24/00	paragraphs.

generator to issue a service request by altering the contents of the Service Request Enable Register. The Service Request Enable Register is read with the *SRE? common query. The response to this query is a number that represents the sum of the binary-weighted value of the Service Request Enable Register. The value of the unused bit 6 is always zero. The Service Request Enable Register is written using the *SRE command followed by a decimal value representing the bit values of the Register. A bit value of 1 indicates an enabled condition. Consequently, a bit value of zero indicates a disabled condition. The Service Request Enable Register is cleared by sending *SRE0. The generator always ignores the value of bit 6. Summary of *SRE commands is given in the following. *SRE0 - Clears all bits in the register. *SRE1 - Not used. *SRE2 - Not used. *SRE4 - Not used. *SRE8 - Not used. *SRE16 - Service request on MAV. *SRE32 - Service request on ESB summary bit. *SRE128 - Not used. Standard Event Status The Standard Event Status Register reports status for special Register (ESR) applications. The 8 bits of the ESR have been defined by the IEEE-STD-488.2 as specific conditions which can be monitored and reported back to the user upon request. The Standard Event Status

The arrangement of the various bits within the register is firm and is required by all GPIB instruments that implement the IEEE-STD-488.2. Description of the various bits is given in the following:

Register is destructively read with the *ESR? common query. The Standard Event Status Register is cleared with a *CLS common

command, with a power-on and when read by *ESR?.

The Service Request enable register is an 8-bit register that enables

corresponding summary messages in the Status Byte Register. Thus, the application programmer can select reasons for the

Bit 0 - Operation Complete. This bit operation is disabled on the Model 3171.

Bit 1 - Request Control. This bit operation is disabled on the Model 3171.

Bit 2 - Query Error. This bit indicates that an attempt is being made to read data from the output queue when no output is either present or pending.

Bit 3 - Device Dependent Error. This bit is set when an error in a device function occurs.

Revised 4/24/00

Service Request Enable

Register (SRE)

Bit 4 - Execution Error. This bit is generated if the parameter following the command is outside of the legal input range of the generator.

Bit 5 - Command Error. This bit indicates the generator received a command that was a syntax error or a command that the device does not implement.

Bit 6 - User Request. This bit operation is disabled on the Model 3171.

Bit 7 - Power On. This bit operation is disabled on the Model 3171.

Standard Event Status Enable Register (ESE)

The Standard Event Status Enable Register allows one or more events in the Standard Event Status Register to be reflected in the ESB summary message bit. The Standard Event Status Enable Register is an 8-bit register that enables corresponding summary messages in the Standard Event Status Register. Thus, the application programmer can select reasons for the generator to issue an ESB summary message bit by altering the contents of the ESE Register.

The Standard Event Status Enable Register is read with the *ESE? common query. The response to this query is a number that represents the sum of the binary-weighted value of the Standard Event Status Enable Register

The Standard Event Status Enable Register is written using the *ESE command followed by a decimal value representing the bit values of the Register. A bit value one indicates an enabled condition. Consequently, a bit value of zero indicates a disabled condition. The Standard Event Status Enable Register is cleared by setting *ESE0. Summary of *ESE messages is given in the following.

- *ESE0 No mask. Clears all bits in the register.
- *ESE1 ESB on Operation Complete.
- *ESE2 ESB on Request Control.
- *ESE4 ESB on Query Error.
- *ESE8 ESB on Device Dependent Error.
- *ESE16 ESB on Execution Error.
- ***ESE32** ESB on Command Error.
- *ESE64 ESB on User Request.
- *ESE128 ESB Power on.

Error Messages

In general, whenever the Model 3171 receives an invalid SCPI command, it automatically generates an error. Errors are stored in a special error queue and may be retrieved from this buffer one at a time. Errors are retrieved in first-in-first-out (FIFO) order. The first error returned is the first error that was stored. When you have read all errors from the queue, the generator responds with a 0,"No error" message.

Revised 4/24/00

If more than 5 errors have occurred, the last error stored in the queue is replaced with -350, "Queue Overflow". No additional errors are stored until you remove errors from the queue. If no errors have occurred when you read the error queue, the generator responds with 0,"No error."

The error queue is cleared when power has been shut off or after a *CLS command has been executed. The *RST command does not clear the error queue. Use the following command to read the error queue:

SYSTem:ERRor?

Errors have the following format (the error string may contain up to 80 characters):

-102,"Syntax error"

A complete listing of the errors that can be detected by the generator is given below.

Revised 4/24/00

-102. "Svntax error" -102, "Syntax error, Comma not expected" -102, "Syntax error, Unbalanced string" -102, "Syntax error, unterminated expression" -104, "Data type error." -109, "Missing parameter" -110, "Command Header Error" -112, "Program mnemonic too long" -113, "Undefined header, VOLT:MODE LIST allowed with ARB only" -113, "Undefined header, DC and PULS only functions allowed" -114, "Header suffix out of range" -114, "Header suffix out of range, VOLT:REF:STAT allowed only on ARB" -114, "Header suffix out of range, FUNC:POL allowed only with ARB" -114, "Header suffix out of range, FUNC:COUN allowed only with ARB" -114, "Header suffix out of range, DIGital:STIMulus:PATTern[:VALue] allowed only with ARB" -114, "Header suffix out of range, DIGital:STIMulus:PATTern:REPeat allowed only with ARB" -114, "Header suffix out of range, DIGital:TIMing:CLOCk allowed only with ARB" -114, "Header suffix out of range, DIGital:COUN allowed only with ARB" -114, "Header suffix out of range, LIST:VOLT allowed only with ARB" -114, "Header suffix out of range, LIST:VOLT:REP allowed only with ARB" -114, "Header suffix out of range, LIST:COUN allowed only with ARB" -114, "Header suffix out of range, LIST:STRATe allowed only with ARB" -114, "Header suffix out of range, Output filter allowed only with ARB" -114, "Header suffix out of range, Output filter allowed only with ARB" -114, "Header suffix out of range, J2-A4 CLKOUT allowed only with PG1 or PG2" -114, "Header suffix out of range, FREQuency allowed only with ARB" -114, "Header suffix out of range, FREQ:REF:STAT allowed only with ARB" -114, "Header suffix out of range, Rise/Fall-Time not allowed with ARB" -114, "Header suffix out of range, Rise-Time not allowed with ARB" -114, "Header suffix out of range, Fall-Time not allowed with ARB" -114, "Header suffix out of range, Double pulse allowed only with PG1" -114, "Header suffix out of range, Double pulse allowed only with PG1" -114, "Header suffix out of range, AM Modulation allowed only with ARB" -114, "Header suffix out of range, AM Modulation allowed only with ARB" -114, "Header suffix out of range, External Clock Input allowed only with ARB" -121, "Invalid character in number" -131, "Invalid suffix, Unit suffix not defined" -140, "Character data error" -144, "Character data too long" -160, "No defined data" -161, "Invalid block data" -200, "Execution error" -201, "Query only" -202, "No query allowed" -204, "Constant not allowed in STATUS subsystem" -207, "Numeric value not in union" -208, "Illegal number of parameters, Too many" -210, "Run out of memory handle"

-211, "Trigger ignored"

- -212, "Unit not required"
- -213, "Unit ignored"
- -221, "Settings conflict, DIGital:TIMing:SOURce must be INTernal"
- -222, "Data out of range"
- -223, "Too much data, Only 4095 list element allowed"
- -226, "List lengths not the same, List lengths don't match"
- -311, "Memory error, parameter list too long"
- -330, "Self-test failed"
- -350, "Queue overflow, Data queue overflow"
- -350, "Queue overflow, Insufficient room in output queue"
- -350, "Queue overflow, Output buffer is busy"
- -400, "Query error"

This page was left intentionally blank.

Using The Instrument 3-54

Performance Checks

Performance Checks	operation of the Model 3171 to standard. Performance checks ver	ance test information to verify the an external voltage and frequency ify proper operation of the instrument part of the incoming inspection of the
Environmental Conditions	Test should be performed under laboratory conditions having an ambient temperature of 25° C +/- 5° C and at relative humidity of less than 80%. If the instrument has been subject to conditions outside these ranges, allow at least one additional hour for the instrument to stabilize before beginning the adjustment procedure. Always perform a self-test sequence before commencing with the performance checks. The self-test, if executed without failure, ensures proper operation of the generator. If self-test failures have been encountered, the instrument needs to be returned to Racal Instruments for repair. Instructions on how to perform self-test is given later in this chapter in the Self-Test section.	
Warm-Up Period	Most equipment is subject to a small amount of drift when it is first turned on. To ensure accuracy, turn on the power to the Model 3171 and allow it to warm-up for at least 30 minutes before beginning the performance test procedure.	
Initial Instrument Setting	To avoid confusion as to which initial setting is used for each test, reset the instrument to factory default values prior to each test. To reset the Model 3171 to factory defaults, send the following command:	
	*RST	
Recommended Test Equipment	Recommended test equipment for performance checking is listed below. Test instruments other than those listed may be used only if their specifications equal or exceed the required characteristics.	
	Test Instrument Universal Counter	Minimum Specifications 100MHz, 10ppm
	DMM	ACV, 0.2%; DCV, 0.1% accuracy
	Oscilloscope	4 channels, 350 MHz analog bandwidth
	J1 Mating Connector J2 Mating Connector	ITT DDM-24W7P-K87 ITT DBM5W5P-K87 Plug DM53740-1 coax contacts
	Mating connectors connected to impedance.	BNC cables 1 meter long, 50 Ω

Performance Check Procedures

Self-Test	Built In Test (BIT) is performed at power on and when commanded. The Power on BIT is a subset of the commanded BIT due to the fact that power on BIT must execute in less than 5s for a VXIbus module. Commanded BIT checks about 95% of the Model 3171 hardware and executes in less than 30s. Prior to performing the Performance checks, Commanded BIT is run to verify general operation of the Model 3171. It does not test for accuracy. Therefore, it should be used as an indication that the Model 3171 operates, in general. The SCPI Command *TST? initiates the Commanded BIT procedure. If the instrument fails BIT, it will generate an error. Results of BIT are read back with the SCPI command :SYSTEM:ERROR?. If the instrument executes BIT without errors, 0 is placed in the output queue. A non-zero result indicates BIT failure. If BIT runs successfully the following Performance Checks can be performed. If the BIT procedure fails to respond correctly, the instrument should be returned to Racal Instruments for repair. See Long Term Storage or Repackaging For Shipment .	
	Use the following procedures to check the Model 3171 against the specifications. A complete set of specifications is listed in appendix A. The following paragraphs show how to set up the instrument for the test, what the specifications for the tested function are, and what acceptable limits for the test are. If the instrument fails to perform within the specified limits and it passes the Commanded BIT, then perform the Auto Calibration procedure. See Auto Calibration . Then rerun the performance checks. If the instrument still fails to perform within the specified limits then the instrument should be returned to Racal Instruments for repair.	
Auto Calibration	Auto Calibration should only be run if self-test (BIT) completes successfully. Auto Calibration is performed when commanded by CALIBRATION:ALL. Calibration factors are stored in an on-board EEPROM (Electrically Erasable and Programmable Read Only Memory). Auto Calibration requires less than 3s to perform.	

(J1-A7) Main Output

Frequency Accuracy

Accuracy Specifications: +/- .01% of programmed value

Equipment: Counter

- 1. Configure the Model 3171 as follows: Function: SOURCE 3 Square Frequency: 10Hz Amplitude: 1V Remote Commands: *RST :SOUR3:FUNC:SHAP SQU :SOUR3:VOLT:TRIG 1 :SOUR3:FREQ 10 :OUTP3:IMP 50 :OUTP3:STAT ON :TRIG3:SOUR IMM :INIT3:IMM
- 2. Set the counter to frequency measurement.
- 3. Connect the Model 3171 Main output **J1-A7** to the counter's input. Change the frequency setting as required for the test and verify that the reading on the counter display is as follows:

3171 Setting	Counter Reading
10.00 Hz	9.999 Hz - 10.001 Hz
100.0 Hz	99.99 Hz - 100.01 Hz
1.000 KHz	999.9 Hz - 1.0001 KHz
10.00 KHz	9.999 Khz - 10.001 KHz
100.0 KHz	99.99 Khz - 100.01 KHz
1.000 MHz	999.9 Khz - 1.0001 MHz
10.00 MHz	9.999 Mhz - 10.001 MHz

If the frequency is out of spec by a small amount, verify the VXIbus CLK10 signal at P2 pin C1. Model 3171 clock generation is derived from the VXIbus CLK10 signal. The CLK10 frequency source from Slot 0 is 10 MHz and its accuracy must be verified to be equal to or better than +/- 100ppm.

Amplitude Accuracy

Accuracy Specifications: +/- 0.5% of setting or +/-15mV

Equipment: DMM

- 1. Configure the Model 3171 as follows: Function: SOURCE 3 Sine Frequency: 1KHz Amplitude: 7.07V Remote Commands: *RST :SOUR3:FUNC:SHAP SIN :SOUR3:VOLT:TRIG 7.07 :SOUR3:FREQ 1000 :OUTP3:IMP 50 :OUTP3:STAT ON :TRIG3:SOUR IMM :INIT3:IMM
- 2. Set the DMM to ACV measurement (RMS).
- 3. Connect the Model 3171 Main output **J1-A7** to the DMM's input. Set the amplitude setting as required for the test and verify the reading on the DMM display as follows:

.

3171 Setting	DMM Reading
7.07V _p	4.975V - 5.025V
707V _p	.485V515V

DC Offset Characteristics

Accuracy Specifications: +/- 0.5% of setting or +/-15mV

Equipment: DMM,

- 1. Configure the Model 3171 as follows: Function: SOURCE 3 Sine Frequency: 1 MHz Amplitude: 1.61V DC Offset: 5.0V Remote Commands: *RST :SOUR3:FUNC:SHAP SIN :SOUR3:VOLT:TRIG 1.61 :SOUR3:VOLT:TRIG:OFFS 5.0 :SOUR3:FREQ 1000000 :OUTP3:IMP 50 :OUTP3:STAT ON :TRIG3:SOUR IMM :INIT3:IMM
- 2. Set the DMM to DCV measurement.
- 3. Connect the Model 3171 Main output **J1-A7** to the DMM input. Set the amplitude setting as required for the test and verify the reading on the DMM display as follows:

3171 Vp	3171	DMM
Setting	Offset Setting	Reading
1.61V _P	+5.00	4.975V - 5.025V
1.61V _p	-5.00	-4.975V5.025V
0.161V _p	0.500	0.485V - 0.515V
0.161V _p	-0.500	-0.485V0.515V

(J2-A1) PG1OUT

Frequency & Pulse width
AccuracyFrequency accuracy specifications: +/- .01% of programmed value
Pulse Width accuracy specifications: +/- 0.1% or +/- 5ns

Equipment: Counter

1. Configure the Model 3171 follows:

SOURCE 1 Pulsed DC Function: Period: 0.1s Pulse width: 0.05s Rise time: 10ns Amplitude: 5V 50 Ω Output Imp: Remote Commands: *RST :SOUR1:FUNC:SHAP PULS :SOUR1:VOLT:TRIG 5 :SOUR1:PULS:STAT ON :SOUR1:PULS:TRAN:LEAD 10e9 :SOUR1:WIDT 0.05 :SOUR1:PER 0.1 :OUTP1:IMP 50 :OUTP1:STAT ON :TRIG1:SOUR IMM :INIT1:IMM

- 2. Set the counter to frequency measurement then pulse width measurement for each setting.
- 3. Connect the Model 3171 PG1OUT **J2-A1** to the counters input. Change the period setting as required for the test and adjust the pulse width to 50% of period for each setting then, verify the reading on the counter display as follows:

	Puise	
Widt	h	
Counter	3171	Counter
Reading	Setting	Reading
9.999 Hz-10.001 Hz	50.0ms	49.95-50.05ms
99.99 Hz-100.01 Hz	5.00ms	4.995-5.005ms
999.9 Hz-1.0001 Khz	500µs	499.5-500.5µs
9.999 Khz-10.001 Khz	50.0µs	49.95 - 50.05µs
99.99 Khz -100.01 Khz	5.00µs	4.995 - 5.005µs
999.9 Khz-1.0001 Mhz	500ns	495 - 505ns
9.999 Mhz-10.001 Mhz	50.0ns	45.0 - 55.0ns
49.995 Mhz-50.005 MHz	10ns	5.0 - 15ns
	Counter Reading 9.999 Hz-10.001 Hz 99.99 Hz-100.01 Hz 999.9 Hz-1.0001 Khz 9.999 Khz-10.001 Khz 99.99 Khz -100.01 Khz 999.9 Khz-1.0001 Mhz	Width Counter 3171 Reading Setting 9.999 Hz-10.001 Hz 50.0ms 99.99 Hz-100.01 Hz 500ms 99.99 Hz-10.001 Khz 500µs 99.99 Khz-10.001 Khz 50.0µs 99.99 Khz-10.001 Khz 50.0µs 99.99 Khz-10.001 Khz 50.0µs 99.99 Khz-10.001 Khz 5.00µs 99.99 Khz-10.001 Mhz 50.0ns 99.99 Mhz-10.001 Mhz 50.0ns

If the frequency is out of spec by a small amount, verify the VXIbus CLK10 signal at P2 pin C1. All Model 3171 clock generators are derived from the VXIbus CLK10 signal. The CLK10 frequency source from Slot 0 **MUST** be 10 MHz and its accuracy **MUST** be equal to or better than +/- 100ppm.

Amplitude Accuracy

Accuracy Specifications: +/- 0.5% of set or +/-15mv

Equipment: DMM

- Configure the Model 3171 as follows: Function: SOURCE 1 DC Amplitude: 11V Output Imp: 50 Ω Remote Commands: *RST :SOUR1:FUNC:SHAP DC :SOUR1:VOLT 11 :OUTP1:IMP 50 :OUTP1:STAT ON
- 2. Set the DMM to DCV measurement.
- 3. Connect the Model 3171 PG1OUT **J2-A1** to the DMM input. Set the amplitude setting as required for the test and verify the reading on the DMM display as follows:

3171 Setting	DMM Reading
±11.0V	±10.945V - 11.055V
±5.0V	±4.975V - 5.025V
±2.0V	±1.985V - 2.015V
±1.0V	±0.985V - 1.015V

(J2-A5) PG2OUT

Frequency & Pulse width Accuracy	Frequency accuracy Specifications: +/01% of programmed value Pulse Width accuracy Specifications: +/- 0.1% or +/- 5ns			
	Equipment: Counter			
	 Configure the Model 3171 as follows: Function: SOURCE 2 Pulse DC Period: 0.1s Pulse width: 0.05s Rise time: 10ns Output Imp: 50 Ω Amplitude: 5V Remote Commands: *RST :SOUR2:FUNC:SHAP PULS :SOUR2:VOLT:TRIG 5 			
	:SOUR2:VULTITING 3 :SOUR2:PULS:TRAN:LEAD 10e-9 :SOUR2:WIDT 0.05 :SOUR2:PER 0.1 :OUTP2:IMP 50 :OUTPUT2:STAT ON :TRIG2:SOUR IMM :INIT2:IMM	•		
	 Set the counter to frequency measurement then pulse wire measurement for each setting. 	dth		
	 Connect the Model 3171 PG2OUT J2-A5 to the counters inp Change the period setting as required for the test and adjust t pulse width to 50% of period for each setting then, verify t reading on the counter display as follows: Pulse 	he		
	Frequency Width 3171 Counter 3171 Counter Setting Reading Setting Reading 10.00 Hz 9.999 Hz - 10.001 Hz 50.0ms 49.95-50.05ms 100.0 Hz 99.99 Hz - 100.01 Hz 5.00ms 4.995 - 5.005ms 1.000 Khz 999.9 Hz - 1.0001 Khz 500µs 49.95 - 50.05µs 10.00 Khz 9.999 Khz - 10.001 Khz 50.0µs 49.95 - 50.05µs 10.00 Khz 9.999 Khz - 10.001 Khz 50.0µs 49.95 - 50.05µs 100.0 Khz 99.99 Khz - 100.01 Khz 50.0µse 4.995 - 50.05µs 100.0 Khz 99.99 Khz - 10.001 Mhz 500ns 495 - 50.05µs 1.000 Mhz 99.99 Mhz - 10.001 Mhz 50.0ns 45.0 - 55.0ns 10.00 Mhz 9.999 Mhz - 50.005 Mhz10.0ns 5.0 - 15ns 10.00 Mhz 9.995 Mhz - 50.005 Mhz10.0ns 5.0 - 15ns If the frequency is out of spec by a small amount, verify the VXIb CLK10 signal at P2 pin C1. All Model 3171 clock generators a derived from the VXIbus CLK10 signal. The CLK10 frequent source from Slot 0 SHALL be 10 MHz. Its accuracy SHALL equal to or better than +/- 100ppm.	is is are ncy		

Amplitude Accuracy	Accuracy Specifications: +/- 0.5% of set or +/-15mv			
	Equipment:		DMM	
	1	Configure the Model Function: Amplitude: Output Imp: Remote Comma	SOUF 11V 50 Ω	*RST :SOUR2:FUNC:SHAP DC :SOUR2:VOLT 11 :OUTP2:IMP 50 :OUTP2:STAT ON
	2.	Set the DMM to DCV	/ meas	surement.
	 Connect the Model 3171 PG2OUT J2-A5 to the DMM the amplitude setting as required for the test and verify th on the DMM display as follows: 		uired for the test and verify the reading	
		3171 Setting ±11.0V ±5.0V ±2.0V ±1.0V	±10.9 ±4.97 ±1.98	Reading 145V - 11.055V 15V - 5.025V 15V - 2.015V 15V - 1.015V
Trigger and Gate Characteristics	In Triggered mode each transition of the selected input trigger soustimulates the Model 3171 to generate a burst of pre-selected num of waveforms after a programmable delay period.		nerate a burst of pre-selected number	
	When in Gated mode the signal level at the selected input trigger so enables the Model 3171 to output. The last cycle of the output wavef is always completed.			
				be the source of the trigger or gate ry Waveform Generator.

Equipment: 4 channel oscilloscope

Triggered

1. Configure the Model 3171 as follows:

Function: Frequency: Amplitude: Output Imp: Operating Mode: Trigger Source: Count: Trigger Delay: Trigger Slope:	SOURCE 3 Sine Wave 1.000Mhz 5V 50 Ω Triggered TTLTrg Bus 1 3 (output 3 waveforms for each trigger) 500ns Positive
Function:	SOURCE 1 Pulse DC
Frequency:	1.000Mhz
Pulse Width:	500ns
Rise Time:	10ns
Amplitude:	5V
Output Imp:	50 Ω
Operating Mode:	Triggered
Trigger Source:	TTLTrg Bus 1
Count:	2 (output 2 pulses for each trigger)
Trigger Delay:	500ns
Trigger Slope:	Positive
Function:	SOURCE 2 Pulse DC
Frequency:	100.0KHz
Pulse Width:	500ns
Rise Time:	10ns
Amplitude:	5V
Output Imp:	50 Ω
Operating Mode:	Continuous
Trigger Source:	Immediate
Count:	0 (output continuous pulses)

Output 2:TTLTrg1:SOURce INT 2 (outputs PG2 signal to TTL Trigger Bus)

Remote Commands:

*RST :OUTP2:TTLT1:SOUR INT2 :OUTP2:TTLT1:STAT ON :SOUR3:FUNC:SHAP SIN :SOUR3:FUNC:COUN 3 :SOUR3:VOLT:TRIG 5 :SOUR3:FREQ 1.0E6 :TRIG3:SLOP POS :TRIG3:DEL 500E-9 :TRIG3:SOUR TTLT1 :OUTP3:IMP 50 :OUTP3:STAT ON :SOUR1:FUNC:SHAP PULS :SOUR1:VOLT:TRIG 5 :SOUR1:PULS:COUN 2 :SOUR1:PULS:TRAN:LEAD 10e-9 :SOUR1:WIDT500E-9 :SOUR1:PER 1000E-9 :TRIG1:SLOP POS :TRIG1:DEL 500E-9 :TRIG1:SOUR TTLT1 :OUTP1:IMP 50 :OUTP1:STAT ON :SOUR2:FUNC:SHAP PULS :SOUR2:VOLT:TRIG 5 :SOUR2:PULS:TRAN:LEAD 10e-9 :SOUR2:WIDT. 5E-6 :SOUR2:PER 10E-6 :OUTPUT2:IMP 50 :OUTP2:STAT ON :TRIG2:SOUR IMM :INIT2:IMM

 Connect the Main Output (J1-A7) to channel 1 of the scope. Connect PG1OUT (J2-A1) to channel 2 of the scope. Connect PG2OUT (J2-A5) to channel 3 of the scope.

Set the scope to trigger on channel 3 the PG2OUT pulse. Verify channel 1 displays 3 sine waves displayed for each rising edge of channel 3 input.

Verify the first sine wave should start 500ns after the rising edge of the PG2 pulse.

Verify channel 2 displays (2) 500ns pulses for each pulse on channel 3.

Verify the first pulse rising edge on channel 2 is delayed 500ns after the rising edge of the PG2 pulse.

Gated

1. Configure the model 3171 as follows:

Function: Frequency: Amplitude: Output Imp: Operating Mode: Trigger Source: Count: Trigger Delay: Gated Level:	SOURCE 3 Sine Wave 1.000Mhz 5V 50 Ω Gated TTLTrg Bus 1 0 (output waveforms continuously until gate is removed) 200ns Positive
Function: Frequency: Pulse Width: Rise Time: Amplitude: Output Imp: Operating Mode: Trigger Source: Count: Trigger Delay: Gated level: Positive	SOURCE 1 Pulse DC 1.000Mhz 500ns 10ns 5V 50 Ω Gated TTLTrg Bus 1 0 (output pulses continuously until gate is removed) 200ns
Function: Frequency: Pulse Width: Rise Time: Amplitude: Output Imp: Operating Mode: Trigger Source: Count:	SOURCE 2 Pulse DC 100.0KHz $7\mu s$ 10ns 5V 50Ω Continuous Immediate 0 (output continuous pulses) DURce INT 2 (outputs PG2 signal to TTI

Output 2:TTLTrg1:SOURce INT 2 (outputs PG2 signal to TTL Trigger Bus)

Remote Commands: *

*RST :OUTP2:TTLT1:SOUR INT2 :OUTP2:TTLT1:STAT ON :SOUR3:FUNC:SHAP SIN :SOUR3:VOLT:TRIG 5 :SOUR3:FREQ 1.0E6 :TRIG3:GATE:LEVEL HIGH :TRIG3:GATE:SOUR TTLT1 :TRIG3:GATE:DEL 200E-9 :TRIG3:GATE:STAT ON :OUTP3:IMP 50 :OUTP3:STAT ON :SOUR1:FUNC:SHAP PULS :SOUR1:VOLT:TRIG 5 :SOUR1:PULS:COUN 2 :SOUR1:PULS:TRAN:LEAD10e-9 :SOUR1:WIDT500E-9 :SOUR1:PER 1000E-9 :TRIG1:GATE:LEVEL HIGH :TRIG1:GATE:SOUR TTLT1 :TRIG1:GATE:DEL 200E-9 :TRIG:GATE:STAT ON :OUTP1:IMP 50 :OUTP1:STAT ON :SOUR2:FUNC:SHAP PULS :SOUR2:VOLT:TRIG 5 :SOUR2:PULS:TRAN:LEAD10e-9 :SOUR2:WIDT 7E-6 :SOUR2:PER 10E-6 :OUTP2:IMP 50 :OUTP2:STAT ON :TRIG2:SOUR IMM :INIT2:IMM

 Connect the Main Output (J1-A7) to channel 1 of the scope. Connect PG1OUT (J2-A1) to channel 2 of the scope. Connect PG2OUT (J2-A5) to channel 3 of the scope.

Set the scope to trigger on the PG2OUT pulse on channel 3. Verify channel 1 displays 8 sine waves displayed while channel 3 input is high.

Verify the first sine wave should start 200ns after the rising edge of the PG2 pulse.

Verify channel 2 displays (8) 500ns pulses displayed while channel 3 input is high.

Verify the first pulse rising edge on channel 2 is delayed 200ns after the rising edge of the PG2 pulse.

Performance Checks 4-14

Customer Support

Customer Support	Racal Instruments has a complete Service and Parts Department. If you need technical assistance or should it be necessary to return your product for servicing, call 1-800-722-3262 or call 714-859-8999 and ask for Customer Support. You may also contact Customer Support via E-Mail at:
	customer_service@rdii.com
	If parts are required to repair the product at your facility, call 1-800-722- 3262 or 714-859-8999 and ask for the Parts Department.
	When sending your instrument in for repair, complete the form in the back of this manual.
Reshipment Instructions	Use the original packing material when returning the unit to Racal Instruments for servicing. The original shipping carton and the unit's plastic foam will provide the necessary support for safe reshipment.
	If the original packing material is unavailable, wrap the unit in ESD shielding material and use foam to surround and protect the unit.
	Reship in either the original or a new shipping carton.

Support Offices

Racal Instruments, Inc. 4 Goodyear Street Irvine, CA 92718-2002 Phone: 714-859-8999 800 RACAL-ATE 800-722-2528
FAX: 714-859-7139 E-Mail: customer_service@rdii.com
Racal Instruments Ltd 480 Bath Road Slough, Berkshire SL1 6BE, England Phone: +44 (0) 1628 604455 FAX: +44 (0) 1628 662017
Racal Systems Electronique s.a. 18 Avenue Dutartre 78150 LeChesnay, France Phone: +33 (1) 3955 8888 FAX: +33 (1) 3955 6735
Racal Systems Elettronica Srl Strada 2-Palazzo C4 20090 Milanofiori Assago Milan, Italy Phone: +39 (02) 5750 1796 FAX: +39 (02) 5750 1828
Racal Elektronik System GmbH Frankenforster Strasse 21 51427 Bergisch-Gladbach 1, Germany Phone: +49 2204 92220 FAX: +49 2204 21491
Racal Australia Pty Ltd 3 Powells Road Brookvale, NSW 2100, Australia Phone: +61 (2) 9936 7000 FAX: +61 (2) 9936 7036
Racal Electronics Pte Ltd 26 Ayer Rajah Crescent, 04-06/07 Ayer Rajah Industrial Estate, Singapore 0513 Phone: +65 7792200 FAX: +65 7785400
Racal Instruments, Ltd. Sun House 13th Floor 181 Des Voeux Road, Central, Hong Kong Phone: +852 281 58663 FAX +852 281 58141

Model 3171 Specifications

General Specifications

Basic Fu									
Dusiert	Wavefor	rm Gene	vrator		1 (main	Output)			
	Pulse G						tor 1 & 2	')	
Physical	Format	onorator	0	Single	Slot, VXI			.)	
Front Pa									
	Inputs	Tria/Co	te (Arb):	тті					
				isolated					
					max, 25		od		
		•	G1 & PG		max, 20	0 130181	eu		
		•		32): TTL					
	Outputs		Ular	JZ). TTL					
	Outputs	Wavefo	rm (Arh)	·7 -2	Ω, 50Ω ο	r 930 2	50V Isola	ated	
					±15mA, 1				
			•	,	±15mA, 1				
					$Z_{out} = 20$				
					_ into 500				
		,		,					
VXIbus	Interface	Data							
(Single-slo	ot, message	e based, V	XIbus 1.4))					
	Softwar								
		SCPI, I	EEE 488	8.2, LabV	IEW, Lal	oWindow	/s/CVI, V	XI <i>plug&</i>	olay WIN Framework
Backplane Signal Support									
		TTLTrg(0-7: Trig	ger Input	, Sync O	uput			
	Cooling		-						
			@ .45m	1mH₂0					
	Built-In T			_					
				<5 secon				_	
					% fault d	etection,	<30 sec	onds	
	Auto-Ca			ninute pow		~			
	.		n Non-V	olatile M	emory, <	3 second	IS		
	Status L	•	_	o o v -					
		Red:			Test Failu	ure			
				tput On/0					
				utput On					
	Book C.			utput On/ onsumpt					
	Peak Cl		Power C +24	•	_	<u>-2</u>	-5.2	-12	-24
	1 _{Pm} (A)		<u>+24</u> .45	<u>+12</u> .55	<u>+5</u> 2.5	<u>-2</u> .03	<u>-5.2</u> .4	<u>-12</u> .55	<u>-24</u> .45
	$1_{Pm}(A)$ $1_{Dm}(mA)$	Q/	.45 1.1	.55 1.0	2.5 .63	.03 .81	.4 1.6	.55 .80	т.Ј
	I _{Dm} (IIIA)	,94	1.1	1.0	.05	.01	1.0	.00	

Environmental

Temperature Operating: 0-50°C Storage: -40°C to +70C Altitude Operating: 10,000 ft. Storage: 15,000 ft. Weight 3.5lbs (1.6kg) EMC (Council Directive 89/336/EEC) EN55011, Group 1, Class A EN50082-1, IEC 801-2,3,4 MTBF 19,407 hrs

Waveform Generator Requirements: MAIN OUTPUT

Isolation: 250 volts DC Waveforms Types: ±Sine, ±Square, ±Triangle, ±Ramp, DC, Pulse DC, Arbitrary. Output Impedance: Voltage: Voltage Accuracy: Voltage offset: Resolution: Accuracy: Frequency: Resolution: Accuracy: Burst: Memory depth: Sample rate: Delay from input trigger: Resolution: Accuracy: Trigger source:

Output Protection: Rise Time

(J1-A7)

Isolated from the VXI chassis Ground Frequency Range: .001Hz to 10MHz .001Hz to 10MHz .001Hz to 10MHz .001Hz to 10MHz

.001Hz to 40MHz Sample Rate: 0.15Hz to 80MHz 50 $\Omega/93 \Omega/<2 \Omega$ selectable $22V_{reg}$ into 50 Ω ; 12 bit resolution ± 0.5% or 15 mV 0 to ± 11V 12 bits ±0.5% or 15 mV as shown above .01% of programmed ± 0.01% of programmed 1 to 65535 waveforms or continuous 128K (131072) 0.15Hz to 80MHz max 170s to 1s 2ns or 0.01% of programmed ±5ns or 0.1% of programmed External (J1-A3), VXI TTL Trigger bus 0-7 Positive or negative edge triggered The Output is current limited to 400mA. <10 nsec for pulse or squarewave non-programmable (5V swing)

Pulse Generator #1: OUTPUT:

PUT:	
PUT: Isolation: Amplitude: Resolution: Accuracy: Offset: Resolution: Accuracy: Frequency: Resolution: Accuracy: Pulse Width: Resolution: Accuracy: Rise & Fall times:	NOT isolated from the VXI chassis ground \pm 11V into 50 Ω load 5.4mV \pm 0.5% or 15mV (whichever is greater) 0 to \pm 11V (Amplitude + offset not to exceed \pm 11V) 10mV \pm 0.5% or 15mV (whichever is greater) 0.5Hz to 50MHz .01% of programmed 0.01% of programmed 10ns to 1s 2ns or .01% of programmed whichever greater \pm 0.1% or \pm 5ns (whichever is greater) 5ns to 800µs (5 Ranges) Range 1: 5ns to 150ns (both rise and fall time programmed to the same value controlled by rise time value) Range 2: 150ns to 1.5µs (independent control of both rise and fall time) Range 3: 1.5µs to 112.5µs (independent control of both rise and fall time) Range 5: 112.5µs to 800µs (independent control of both rise and fall time)
Pulse delay:	130ns to 1s Delay from input trigger (as Relates to fastest Ramps only)
Resolution: Accuracy: Trigger source:	2ns or .01% of programmed whichever is greater ±0.1% or ±5ns whichever is greater External (J2-A3) , VXI TTL Trigger bus 0-7 Positive or negative edge triggered
Burst: Output Protection:	1 to 65535 pulses or continuous Normal or inverted pulse, software selectable The Output is current limited to 400mA

(J2-A1)

Pu

Pulse Generator #2:	(J2-A5)
Isolation:	NOT isolated from the VXI chassis ground
Amplitude:	\pm 11V into 50 Ω load
Resolution:	5.4mV
Accuracy:	±0.5% or 15mV whichever greater
Offset:	0 to \pm 11V (Amplitude + offset not to exceed \pm 11V)
Resolution:	5.4mV
Accuracy:	±0.5% or 15mV (whichever is greater)
Frequency:	0.5Hz to 50MHz
Resolution:	
	.01% of programmed
Accuracy:	± .01% of programmed
Pulse Width:	10ns to 1s
Resolution:	2ns or .01% of programmed whichever greater
Accuracy:	±0.1% or ±5ns whichever greater
Rise & Fall times:	5ns to 40ns (both rise and fall time are programmed to the
	same value controlled by rise time value)
Pulse delay:	130ns to 1s Delay from input rigger
Resolution:	2ns or .01% of programmed whichever greater
Accuracy:	±0.1% or ±5ns whichever is greater
Trigger source:	External (J2-A3), VXI TTL Trigger bus 0-7
00	Positive or negative edge triggered
Burst:	1 to 65535 pulses or continuous, normal or inverted pulse, software selectable
Output Protection:	The Output is current limited to 400mA.
Gate Input for Pulse Generators	
#1 & #2	(J2-A2)
Input threshold:	TTL Level
	Input is pulled up through 4.7K resistor to +5V (Input is
	common for PG1 & PG2)
Gate Input:	±state, software selectable to gate on the Pulse Gen.
Gale input.	Pulses appear at output, when Gate is true after
	programmable delay. When the Gate input goes false, the
	last complete pulse is output.
Trigger Input for Pulse Generators	
#1 & #2	(J2-A3)
Input threshold:	TTL Level
	Input is pulled up through 4.7K resistor to +5V (Input is
	common for PG1 & PG2)
Trigger Input:	± edge, software selectable to trigger Pulse Gen. Output
rigger liput.	appears after programmable delay.
	משריש מתכי שיטומוווומטוב טבומץ.
CLKOUT	(J2-A4)
Output:	TTL Level into 50 Ω load
	PG1 or PG2 can be selected to output on this pin.
	Page Changed 8/3/98

Appendix A-4

DIGITAL WORD OUTPUT

Memory Bit: Output Pin		
M15 - to VXI trigger (Most Signif		
M14 - MEMSQW (for expansion	card)	
M13 - CURSOR OUT	J1-5	
M12 - SYNC OUT	J1-4	
M11 - DAC D1 (MSB)		
M10 - DAC D2		
M9 - DIG9	J1-16	
M8 - DIG8	J1-15	
M7 - DIG7	J1-14	
M6 - DIG6	J1-13	
M5 - DIG5	J1-12	
M4 - DIG4	J1-11	
M3 - DIG3	J1-10	
M2 - DIG2	J1-9	
M1 - DIG1	J1-8	
M0 - DIG0	J1-7	
Digital Word width:	12-bit	
Output Level:	TTL (source & sink	
	· · · · · · · ·	

Digital Word width:	12-Dit		
Output Level:	TTL (source & sink 15mA)		
Availability:	Not available simultaneously with MAIN OUT		
Frequency:	0.15Hz to 40 MHz		
Pulse width:	12.5ns to 6.6s per memory pattern		
Memory Depth 128K			
Sample rate:	80MHz max		

Am In:

Input voltage: Bandwidth: Input Impedance:

TRIG/GATE INPUT:

Input threshold: Maximum input frequency:

EXTCLK:

Input threshold: Maximum input frequency:

(J1-A1)

When selected allows input to amplitude modulate **MAIN OUTPUT (J1-A7).** ±10V 400Khz

10K Ω

(J1-A3)

Input may be operated as Trigger input or Gate input, Software selectable. Triggers on + or - edge. Software selectable Gate on + or - State, Software selectable ; When gate is removed last cycle will be completed.

TTL level (pulled up to +5v through 4.7k Ω resistor) 40MHz

(J1-2)

External Clock input. When selected can be used as the clock source for the ARB. Digital Values are output on the rising edge. Analog levels are output on the falling edge. TTL level (pulled up to +5V through 4.7K Ω resistor) 40MHz

REPAIR AND CALIBRATION REQUEST FORM

To allow us to better understand your repair requests, we suggest you use the following outline when calling and include a copy with your instrument to be sent to the Racal Repair Facility.

Model	Serial No.	Date			
Company Name	Purchase Order #				
Billing Address					
		City			
State/Prov	ince Zip/Posta	l Code	Country		
Shipping Address					
		City			
State/Prov	ince Zip/Posta	l Code	Country		
Technical Contact	Phone	Number ()		
Purchasing Contact	Phone Number (
1. Describe, in detail, the all set up details, such a		•	•		
2. If problem is occurring and the controller type.	g when unit is in remot	e, please list	t the program strings used		
3. Please give any addit a faster repair time (i.e.,		eel would be	e beneficial in facilitating		
4. Is calibration data req	uired? Yes No	(please circ	cle one)		
Call before shipping Note: We do not accept "collect" shipments.	•	Ship instruments to nearest support office listed on back.			

Support Offices

Racal Instruments, Inc. 4 Goodyear St., Irvine, CA 92718-2002 Tel: (800) RACAL-ATE, (949) 859- 8999, FAX: (949) 859-7309

Racal Instruments, Ltd.

480 Bath Road, Slough, Berkshire, SL1 6BE, United Kingdom Tel: +44 (0) 1628 604455; FAX: +44 (0) 1628 662017

Racal Systems Electronique

18 Avenue Dutartre, 78150 LeChesnay, France Tel: +33 (1) 3923 2222; FAX: +33 (1) 3923 2225

Racal Systems Elettronica Srl.

Strada 2-Palazzo C4, 20090 Milanofiori Assago, Milan, Italy Tel: +39 (02) 5750 1796; FAX +39 (02) 5750 1828

Racal Elektronik System GmbH.

Frankenforster Strasse 21, 51427 Bergisch-Gladbach 1, Germany Tel:+49 2204 92220; FAX: +49 2204 21491

Racal Australia Pty. Ltd.

3 Powells Road, Brookvale, NSW 2100, Australia Tel: +61 (2) 9936 7000, FAX: +61 (2) 9936 7036

Racal Electronics Pte. Ltd.

26 Ayer Rajah Crescent, 04-06/07 Ayer Rajah Industrial Estate, Singapore 0513. Tel: +65 7792200, FAX: +65 7785400

Racal Instruments, Ltd.

Room 1213 Nan Fung Centre, Tsuen Wan, New Territories, Hong Kong Tel: +852 2405 5500, FAX: +852 2416 4335